
which you can easily restore. This form of backup is popular
because it is good for all table types and because the output can
be used when migrating between databases (e.g., Oracle to
MySQL).

The following example shows how to dump three tables
(users, addresses, and cars) from the single database named
mydb1 out to the flat SQL file mydb1-tables.sql.

mysqldump --opt mydb1 users addresses cars>mydb1-tables.sql

But what if you want to back up more than one database? The fol-
lowing example shows how:

mysqldump --opt --databases mydb1 mydb2>mydb1-n-2.sql

And here is how to back up all local databases:

mysqldump --opt --all-databases > all-your-dbs.sql

Here’s another example. It shows a nice way of remotely using
mysqldump via ssh and standard out to back up all databases on
the remote server called dbserver.example.com to a local file
called dbserver-backup.sql:

ssh root@dbserver.example.com "mysqldump --opt \
--all-databases" > dbserver-backup.sql

That last example is very power-
ful and is handy to run simply as
a safeguard before doing some
major change to your database
server.

Keep in mind that mysql-
dump only gets the raw data
from your databases. It does not
get other external content such
as bin-logs or index files. The
indexes are usually okay,
because they will be rebuilt
when restoring from mysql-
dump. However, the bin-logs are
critical if you need to do point-
in-time recoveries. You will
need to get these to a nice static
location where your system-
level (tape) backups can get

them off the server for future recovery needs. If SSH is your
remote session transport, then scp or sftp should work fine for
getting those other, non-dumped files.

10 — Sys Admin www.sysadminmag.com June 2006

Production MySQL Backups in the Enterprise: Part II
Thomas Weeks

B A C K U P A N D R E C O V E R Y

Last month, I covered the historical problems of getting good
backups with MySQL and described the common free and
commercial tools for doing dump and raw backups. I out-

lined the pros and cons of each method, discussing the hot and
warm online forms of dump and raw-based backup tools and then
posed some basic requirement questions to help determine the right
tool for the job. Now let’s look at those questions again.

Which Type of Backup Is Right for You?
Q: Do you require online (either read-only or r/w) backups? If no,

use “Service Stop & Copy” backups (using raw or dump). If
yes, move on to next question.

Q: Can you afford any interruption (even brief) in write access? If
yes, use warm lock/flush dump, hotcopy, or plain snapshot
solution. If no, go to next question.

Q: Can you afford a dedicated replication-based backup system?
If yes, build slave system (use mysqlsnapshot to set it up). If
no, or if this is not a feasible solution for your environment, go
to next question.

Q: Are you using InnoDB table types? If yes, good; use ibback or
LVM-based snapshots for “hot backups”. If no, convert to
InnoDB table types and use ibbackup or snapshots.

Bear in mind that raw or snapshot-based backups using regular
MyISAM tables will end up being warm/raw (i.e., they still need
lock/flush). It’s not until you use InnoDB table types that you get the
true, hot, online backups, without some type of master/slave replica-
tion type of backup configuration.
This method, in turn, requires
additional hardware and network
bandwidth to stay in sync.

Dump methods are com-
monly used for small or
medium-sized DBs, raw file
copying for medium-sized or
many small DBs, and snapshots
or the OTS solutions are a good
fit for larger DB or many DBs
using InnoDB table types.

Okay. We’ve beat this dead
horse. Let’s dive into some real-
world examples and “do the
needful” (IT translation = get the
job done).

Using Mysqldump
The most time-tested way of doing online MySQL DB

backups, the mysqldump command automatically locks and
flushes your tables and saves the output to a SQL flat file from

Before you just start using mysqldump, consider the tips
below and look over the man page or MySQL AB’s documenta-
tion on the command at:

http://mysql.com/mysqldump

Note that any MySQL command or tool that is documented by
MySQL AB (the commercial company of MySQL) can be found
by appending the command in question to the site’s URL, like:
http://mysql.com/COMMAND.

• For backup automation, create a dedicated MySQL
backup/restore user (or use root) at the OS level and put the
MySQL-based username/password in the user’s home direc-
tory’s ~/.my.cnf file, like this:

[client]
user = root
password = mysqlrootpassword
host = localhost

• Grant your backup/restore user (in mysql.user) permissions to
at least SELECT, RELOAD, FILE (for backups), and INSERT,
CREATE, DROP, INDEX (for restores).

• Enable binary logging (in /etc/my.cnf add bin-log under
[mysqld]) to retain at least two full backups worth of binary
logs and perform daily flushes (or flush daily via backup).

• Be sure to manage your binary logs and delete the ones you no
longer need. Use the mysqlbinlog command to peer into your
logs to see what you need to keep and what you can trash.

• The --opt option is on by default in >=v4.1 and includes the
command-line options --add-drop-table, --add-locks, --all,
--extended-insert, --quick, and --lock-tables.

• To get inter-DB referential integrity when backing up all data-
bases, use --all-databases along with --opt.

• For incremental dump-based backups and to guarantee all DBs and
their binary logs are in sync, use both --opt and --flush-logs
(with log-bin enabled). Only this will allow “point-in-time
recoveries”.

• For InnoDB table types (only), use the --single-transaction
(MySQL v4.0.2 or higher). This will allow for “Hot Backups”
with full r/w (“lock-less”) access during the dump. As of 4.1.8,
use this with the --master-data option for point-in-time
recoveries.

• For large DBs (< v4.1), use --quick and --extended-insert,
or in =>4.1, just use --opt (default). This will create dump files
with combined inserts, greatly decreasing restore times on
large dumps.

• To get faster restores on very large (single) DBs, use dump with
the -T option to save out to a separate paired table.sql (struc-
ture) and table.txt (TSV data) files. Then for fast restores, use:

mysql < table.sql && mysql -e LOAD DATA INFILE table.txt

• For MySQL on Windows, use the --result-file=db.sql
option instead of standard output file redirect “>”.

The mysqldump examples in this section can be a part of a com-
pany-wide database backup system. For example, you could
easily set up a centralized network DB backup server with tape
changer and dedicated DB staging space for getting everything
centralized to disk and then to tape. Then, using SSH-based
remote mysqldumps pulled back to your backup staging space,
you can systematically get any DB server on the network conve-
niently and securely backed up to one central location. I’ll show
a variation of this type of strategy with mysqlhotcopy in the
next section.

Using mysqlhotcopy
If you’re only using ISAM or MyISAM table types,

mysqlhotcopy is usually recommended over dump.
Mysqlhotcopy is faster, simpler, has smaller output, and yields
“drag and drop” restores on some MySQL versions.
Mysqlhotcopy gets all of your database files (i.e., all *.frm
(format), *.MYI (index) and *.MYD (tables) files) in your data-
base directory /var/lib/mysql/databasename/.

Mysqlhotcopy Examples
Here is how one would get a local backup of just the users table

from the mydb1 DB, stored in the secure /root/mysql-backups/
directory:

mysqlhotcopy --allowold mydb1./users/ /root/mysql-backups/

Restoration of such backup files is quick and easy. You simply
shut off the database, copy the files back into your DB’s directory
(e.g., /var/lib/mysql/db-name/ for many Linux systems), and start
the database backup.

Here is how to back up a single database called “mydb1” to
/root/mysql-backups/ using regular expressions to ID it:

mysqlhotcopy --allowold --regexp=mydb1 /root/mysql-backups/

The --allowold option will ensure that that the backup will not
abort if there is already an old copy in the backup directory.

Here’s the same operation, except this time we’re getting all
databases with the “.*” regular expression and keeping the last
old backup of the database also:

mysqlhotcopy --keepold --allowold \
--regexp=".*" /root/mysql-backups/

12 — Sys Admin www.sysadminmag.com June 2006

Figure 1 Scripting ideas for automating multi-server
DB backup pulls

Very powerful indeed! This is the type of stuff that really makes
you love the Unix/Linux command line.

Now that you have this type of remote power, a multi-DB
server backup strategy can be easily implemented. See Figure 1
to get your creative backup script juices flowing. On a small to
medium database, step #1 (where your DB would be read-only
locked) executes in just seconds. All of your DB servers could be
done at once within a known “read-only window”. After this step,
all of your databases will be unlocked (back to r/w mode), and
you can proceed. In step #2, you would use scp to pull down each
of the backups into a common directory locally. In step #3, you
archive them all to tape.

This is a particularly popular solution for sys admins who
have been handed a network full of MySQL application servers
that are already in production and which they are now being
asked to back up.

If you’re using MyISAM table types and you don’t mind a
couple of seconds of read locks, mysqlhotcopy is definitely the
way to go. Now let’s look at some useful tips when using mysql-
hotcopy.

Mysqlhotcopy Tips
Here are some additional tips to keep in mind before relying

on mysqlhotcopy as a part of your overall MySQL backup strat-
egy:

• Use --allowold so that hotcopy won’t abort if it encounters
existing backup data.

Or, you can use this if you want nightly full backups of your data-
base, without having to go dig for tapes somewhere:

mkdir -p /root/mysql-backups_$(date +%Y-%m-%d) && mysqlhotcopy \
--allowold --regexp=".*" /root/mysql-backups_$(date +%Y-%m-%d)

This creates a full backup nightly with its own directory name,
like: /root/mysql-backups_2006-02-19/.

Warning: This type of nightly full DB backup can take up a lot
of space over time. Be sure to keep your system from filling up or
becoming too cluttered. I typically delete everything more than
one week old.

Note that you can use a cronjob (or put in your main backup
script) command to delete backups more than 7 days old like this:

find /root/mysql-backups_* -maxdepth 0 -mtime +7 \
-exec /bin/rm -rf {} \;

Now we can combine what we’ve learned about mysqlhotcopy
with SSH and scp to do remote backups and backup downloads
back to a centralized backup server (with tape or archiving
media):

ssh root@dbserver.example.com "mysqlhotcopy --allowold \
--regexp='.*' /root/mysql-backups/" && scp -rp \
root@dbserver.example.com:/root/mysql-backups/* \
/root/mysql-backups/

June 2006 www.sysadminmag.com Sys Admin — 13

• Use --keepold to keep the previous backup after current one
succeeds. Backup DB directories receive the _old suffix.

• To skip backing up the full index files (.MYI), use the --noindices
option.

• If running binary logs, use the --flushlog option to flush them
after the tables are locked. This is important for point-in-time
recoveries.

• Don’t forget to get a copy of your binary logs. They are stored
in the same directory as your DB directory name (e.g.,
/var/lig/mysql/localhost-bin.*).

• For automating password-less and secure network
backup/downloads, set up SSH key-based authentication. (For
detailed directions on setting up key-based SSH authentication,
you can just Google +ssh-keygen +authorized_keys.)

Now that we’ve covered mysqlhotcopy, let’s take a look at snap-
shot-based backups and other OTS tools.

Snapshot-Based DB Backups and Commercial
Tools

If you have the luxury of designing and building the actual sys-
tem that your corporate MySQL databases reside on, then you can
take the time to build the database partitions atop an LVM system
with a separate file system for the database that you control, such
as Linux+LVM2 and XFS. Additionally, if you can convince your
DBAs to use InnoDB table types, then this can yield a 100% hot
backup system that will gain you praise far and wide.

LVM/XFS Snapshot Example (Linux/LVM2/XFS)
As previously discussed, if you are backing up InnoDB table

types, LVM/file system snapshots are fine without flush locks.
The files on the disk are consistent and can be rebuilt from the
undo/redo logs.

Here is an example of the order of operations that you might
use to do LVM DB snapshots on a system that is properly config-
ured with the required partitions, LVM, and file systems:

• Freeze the XFS file system on the LVM-based volume that you
want to take a snapshot of (this is okay because the InnoDB
databases are running out of RAM when the DB is active).

• Create a 500MB snapshot of the “prod” LV called
“vgmysql-snap”.

• Mount the new snapshot to the mount point /var/lib/mysql-snap.
• Unfreeze the previously frozen production file system.
• Tar the snapshot out to tape, unmount, and destroy the snap-

shot.

Here is what it would look like typed out from the command line,
or what you would need to include in your snapshot backup
script:

xfs_freeze -f /var/lib/mysql \
&& lvcreate -L 500M -s -n snap /dev/vgmysql/prod \
&& mount -o nouuid,ro /dev/mapper/vgmysql-snap /var/lib/mysql-snap \
;xfs_freeze -u /var/lib/mysql \
&& tar czvf /dev/tape /var/lib/mysql-snap
&& umount /var/lib/mysql-snap \
&& lvremove -f /dev/vgmysql/snap

The actual freeze, snapshot, mount, and unfreeze all happen in
just a couple of seconds. Meanwhile the InnoDB database runs in
full hot (online r/w) mode without a second thought.

Gotchas with MyISAM Snapshots (Warm Only)
As previously stated, if you are backing up InnoDB table

types, hot snapshots are fine, because the files on disk can always
be considered consistent. However, when performing
LVM/filesystem snapshots on My/ISAM tables, you must first
issue a FLUSH TABLES WITH READ LOCKS before starting
the snapshot and then an UNLOCK TABLES after the snapshot
is complete. This is what such a backup script would look like
functionally:

FLUSH TABLES WITH READ LOCK
-do snapshot here-
UNLOCK TABLES

After the snapshot is complete, then you can mount the snapshot
and back it up to your backup media.

Hot/Raw Backups with the OTS InnoDB Hot Backup
Package

After covering all the pros, cons, and little details of all the
other DIY methods, the usage and simplicity of using InnoDB
hot backup is really very appealing. To back up everything
(InnoDB tables only), simply issue:

ibbackup /etc/my.cnf /etc/ibbackup.cnf

where the my.cnf is your MySQL server’s config file, and the sec-
ond config file is ibbackup’s config file detailing where and how
the backups are to be done.

To get both InnoDB and MyISAM table types and related files
(warm), use the included Perl wrapper script, innobackup, in a
similar fashion:

innobackup --user=dba --password=xyz --compress \
/etc/my.cnf /backups

Restores are also simple:

ibbackup --restore /etc/ibbackup.cnf

If you want hot/online, quick, and easy MySQL backups and you
don’t want to do it yourself, then InnoDB table types and the
InnoDB Hot Backup (ibbackup) really are the way to go.

The Future of MySQL and Hot Backup API
Going beyond MySQL v4.x, MySQL AB is developing a full

online MySQL Backup API (if Oracle doesn’t buy them first). At
the time of last month’s writing, the Backup API was still being
developed and so MySQL v5.1 beta was released without it.
However, I have spoken with the backup team and the API is
under active development and is slated (but not promised) for
MySQL v5.2. Watch for news and reports in the MySQL Backup
Forum here:

http://forums.mysql.com/list.php?28

Watch for news of inclusion of a libmysqlbackup.so library by
the backup API folks Brian Aker and Greg “groggy” Lehey!
Keep up the great work guys!

14 — Sys Admin www.sysadminmag.com June 2006

General Enterprise Backup and Restoration Tips
If you are more of a DBA and less of a sys admin, then doing

the actual system backups (i.e., getting things to tape) may be the
hard part for you. If that’s the case, here are some tested backup
tips that I’ve recommended over the years:

• Test: After even minor system upgrades or unrelated changes,
always test your backups via restores to make sure nothing is
broken.

• Monitor: Configure your systems to send backup success/fail-
ure notifications. You need to know if your backups start failing
before you need to rely on them!

• Rotate: Rotate your tape pools offsite (e.g., to a remote fire
safe), but always retain a local copy of your last full system
backup.

• Clean: Regularly clean your tape drives (once a month on pro-
duction systems) and backup hardware, and always keep extra
cleaning cartridges on hand. Also have a laminated card of
your tape drives error flash codes affixed to the backup server
or tape drive itself.

• Buy Before: Purchase media before you need it. When budget-
ing, build your servers with TCO figures that include recurring
annual tape/media replacement figures.

• Boot Media: Keep emergency boot media and any special
backup hardware drivers physically with each backup server.

• Other Info: Also keep and maintain any system details, data-
base versions, accounts/passwords, and related information
needed for rebuilds physically with
each of your servers. This is usually
done by keeping a related ring binder
for each server under your care. If
properly done, this is an invaluable
administrative practice.

Conclusion
I hope these two articles have

helped you to formulate a solid pro-
duction MySQL backup strategy. Even
though there previously has not been a
lot of information out there for for-
mally doing MySQL backups, there is
now. There are also other free backup
tools available, and some serious com-
mercial OTS backup packages, too.
Understanding the tools and your own
requirements can really help you get
your production MySQL DB systems
backed up safely to tape. Although
this might still require a bit of manual
work, it can be accomplished and in
some cases can be done even in a full
hot/online state.

The open source movement is con-
tinually evolving and refining MySQL,
in most cases faster than limited closed
source vendors can both fix and grow
their own flagship products. Great peo-
ple like those at MySQL AB (with
assistance from the worldwide open
source developer community) continu-
ally develop and empower MySQL with
features like the new backup API.

June 2006 www.sysadminmag.com Sys Admin — 15

Commercial companies are also rallying behind MySQL and cre-
ating OTS backup tools, such as ibbackup and Acronis True
Image. All the buzz around MySQL indicates that it has really
matured quite well and has now gathered mainstream adoption
momentum. In my opinion, MySQL should be the poster child
for how open source is changing the world of commercial soft-
ware. Viva open source!

References
1. This article is based on my presentation given at the 2005

MySQL user’s conference — http://www.mysqluc.com/cs/ \
mysqluc2005/view/e_sess/7055

2. Mysqlsnapshot script download —
http://jeremy.zawodny.com/mysql/mysqlsnapshot/

3. Some points are taken from my Linux Sys
Admin/Troubleshooting book, The Linux Troubleshooting
Bible, Wiley 2004 — http://www.amazon.com/exec/ \
obidos/tg/detail/-/076456997X/

Thomas holds a BS-EET/Telecom degree from Texas A&M. Since 1999, he
has worked with Rackspace Managed Hosting in the roles of Sys Admin,
Corporate Technical Trainer, Lead Systems Engineer, and liaison between
customer support/security/product/engineering departments. Thomas is the
author of the new book, Linux Troubleshooting Bible (Wiley), and has been
president of the San Antonio technology user group “X-otic Computer
Systems of San Antonio” (xcssa.org) since 1996. “Tweeks” can be reached
via his site: http://theweeks.org/ or at: tweeksjunk2@theweeks.org.

