
This article is the first of a two-part series in which I’ll
describe how to get your MySQL backed up to a safe, static
state [1]. In this part, I’ll provide an overview of the available

technology and requirements. Next month, I will step through the
tricks, tips, and methodologies for getting your data to a safe place
according to your own online access and DB system requirements.

Before getting knee deep in the various tools and methods for
doing effective production MySQL DB backups, in this article, I’ll
first examine the general types of backups that are available, look at
the pros and cons of each, and consider some basic questions regard-
ing the reality of production backup needs (a.k.a. requirements).

Introduction
I work at a large Managed Hosting company that is famous for

managing customers’ dedicated Internet server’s needs, and making
sure that those customers are safe and secure from data corruption.
Around half of our 18,000 Internet
servers are Linux-based Web/email
servers, but as with any Linux
Internet type offering, a large per-
centage of those servers (more than
6,000) are running and using the
MySQL database atop some distro-
specific flavor of GNU/Linux. I tell
customers who are new to running
their own Linux Web/DB servers
that, “Regular system backups are
like car insurance. You don’t need
it until you need it... but when you
do, it had better be there or you’re
in trouble”.

Even with basic system backups
in place, many people less experi-
enced with running Web/database
servers often overlook the special
needs of backing up a live database. And, if they’re not told other-
wise, they often don’t find out about these special needs until it’s
too late.

Demystifying Databases Backup Needs to
Laypersons

Some times a client or a boss will balk at the concept of needing
specific database backups on top of OS backups. To combat such
kickback, a good database backup analogy for the boss or pointy-
haired IT manager who has to approve funding is the “Wiggling
Paper and the Xerox Machine”. The logical exchange goes some-
thing like this:

“Sir, have you ever tried to copy a document on a xerography
machine while you’re wiggling it?” “Well, yes.” “What do you
get?” “A bad copy.” “Right; it’s the same with open files and data-
bases. Do you want to get a bad copy of our corporate data?”

“Well... No!” “Then we either need to stop the wiggling while the
copy is happening (stop the database) or purchase/create a system to
track the wiggling so that we can get a good backup.”

That usually does a good job of politely demystifying the data-
base backup issue for them and helps you get the resources needed
to implement your DB backup system. However, before you dive
right into doing production-grade backups of your MySQL data-
base, you should become familiar with the backup choices that are
available, look at the pros and cons of each, and examine which best
fits your needs.

History: The Traditional Problems with MySQL
Backups

Traditionally, the open source community has dealt with the fact
that MySQL had no native API or other tools for backup either by
shutting down the database to back it up or by simply locking and

dumping the database to flat files
and allowing the system-level
backups to get the static flat files to
tape. While these methods may
work just fine, they do not allow
for hot backups (i.e., online with
r/w access), if they’re done online
at all. For a time, the lack of pol-
ished backup tools relegated use of
MySQL to the likes of hobbyists,
low-budget mom and pop shops, or
DBAs who really knew what they
were doing. There were no “back-
ups for the masses” with MySQL.

Note that the contextual term
“database backup” here refers sim-
ply to getting the database content
to a safe, static state where your
system-wide backups can safely

get them to tape. I will not be covering backups as they pertain to
“system backups”, archiving to tape, or other forms of offline or
long-term storage.

There are still not many backup suites out there that know how to
properly back up all MySQL table types and guarantee backups of
only fully committed transactions, not to mention how to get good
copies of your table space in general. This has tended to keep MySQL
out of the enterprise DB mix and has contributed to its lowly reputa-
tion in the eyes of many IT managers — regardless of the fact that a
competent DBA and backup engineer could make it sing and dance
and get it safely backed up just like the big databases.

The situation has been changing for this robust and speedy open
source database, though, and now there are several free backup tools
available, as well as several full-blown COTS MySQL backup
applications. Furthermore, the near future of MySQL is slated to
include a universal table backup API that will allow all MySQL

12 — Sys Admin www.sysadminmag.com May 2006

Production MySQL Backups in the Enterprise: Part I
Thomas Weeks

B A C K U P A N D R E C O V E R Y

engines to “talk” to tape backup agents and be backed up hot (online
in full r/w mode).

Types of Database Backups
There are essentially two common do-it-yourself types of

MySQL backups along with some less traditional and commercial
solutions. The first two common types of MySQL backups are
dump-based and raw-based backup solutions. Each type has its own
subset of methods, tools, pros, and cons.

Dump-Based Backups
Dump-based backups are commonly seen as the traditional

catch-all method of getting your various database tables to a safe,
static place. This method is common partly because of its simplicity
in dumping the database content to flat files. Flat files are just text-
based files with the data and SQL statements needed to reconstruct
the tables and/or databases. But dumps are also popular because of
their universal acceptance. Most databases out there allow for this
type of flat file backup (MS-SQL, Oracle, PostgreSQL, etc.), and
there are some real advantages to this method, especially if you’re
migrating data between systems or converting the data from one
SQL database engine to another (e.g., Oracle to MySQL).

A dump backup for MySQL, usually using the command-line
tool mysqldump for example, is done by locking and flushing the
tables and then dumping individual rows, tables, or DBs out to a file
system-level flat file, or even directly to a backup device. As a result
of the locking, this form of backup usually results in a warm (or
read-only) database state during the backup. Such dumps can take
from tens of seconds to hours.

Dump Methods
Local warm backups (online but read only) can be done simply

with the mysqldump command running against a local table, a data-
base, or all a server’s databases. Dump methods can also be employed
remotely from a whole group of database servers all back to one cen-
tralized backup server that can be staged for tape archiving. I will
examine this type of remote dump-and-pull configuration later.

You usually do not see basic dump methods that yield hot
backups (full online r/w access) until you start talking about creat-
ing specialized replication backup servers. Replication backup
slave servers are dedicated servers that can be disconnected from
the master and lock/flush dumped for the backup, thus leaving the
master server in a “hot” state. This is a safe and effective method
that many larger Web hosters use for their production MySQL
systems — especially because the dump itself does not affect the
production master server’s system resources (e.g., CPU and RAM)
during the backup.

Dump Pros:

• Simple — This method is simple to do and simple to integrate
into existing pre-backup scripts.

• Open — Backups can be manually edited or grep’ed for data.
• Flexible — Good for migrating to other SQL engines or with

replication.
• Universal — Good for all table types (and for converting table types).
• Remote — Can be easily configured to dump over the network.

Dump Cons:

• Fat — Can require more space/backup than DB files themselves.
• Slower — It’s slower than RAW backup/restore and takes more

CPU/RAM.
• Limited — It’s limited to smaller DBs (due to dump and restore

speed).

Raw Backups
Raw backup methods are not as common, probably because they

are traditionally considered risky by the old timers. However, if
done properly, raw backups can be a very powerful and efficient
way to get your data to a safe place.

Raw backups basically work by flushing, freezing, and grabbing
the binary DB files at the file system level in some way. Although
this “raw backup” is usually faster than the dump process, there are
different methods of getting the data depending on what kind of
availability and speed you require.

Raw Backup Methods
A typical simplistic example of cold, or offline, raw backups is

gracefully shutting down the database and copying all the DB files to
a different location where your system tape backups can then archive
them. This might seem old-fashioned or undesirable; however, many
banks and other financial institutions still use this method where
100% rock-solid backups are required, but 100% database uptime
availability is not. You may have even encountered this at your bank
if you’ve ever tried logging into their Web site or phone system in the
wee hours of the morning to get a real-time balance.

Warm, raw backups (online read only) are done by locking and
cloning the raw DB files in some way. This can safely be done by
locking and flushing the tables and then simply copying the DB
files. Another example of warm, raw backups would be using a
quick lock/flush and copy application, such as mysqlhotcopy.

14 — Sys Admin www.sysadminmag.com May 2006

As previously mentioned, indirect, hot, raw backups can be
accomplished by designing your system with a second replication
DB slave server that is dedicated to performing backups. With such
a setup for doing backups, you simply break the connection from
the master/slave (by either flush/locking or shutting down the
slave), backing up the slave’s DB files (by binary copying in the
case of raw), then unlocking or restarting the slave and allowing it to
re-sync with the master. Thus, you get a backup without ever lock-
ing the master DB server or dragging the production master’s
resources through the mud.

An example of getting hot (r/w), raw backups on a single server
can be seen by using InnoDB table types together with LVM/snap-
shot-based backups, or by using one of several “other forms” of
backups (covered in the next section), including commercial backup
clients.

Here are some of the pros and cons of doing raw backups:

Raw Pros:

• Faster — Faster than dumps usually, since it’s working at the file
system level.

• Scalable — Somewhat scalable. Better for larger databases than
plain dumps.

• Powerful — It can be implemented hot with online LVM snap-
shots.

• Friendly — Friendly to most table types and normalized DB
designs.

Raw Cons:

• Limited — Limited to in-place restores
or same DB table/version migrations.

• Monolithic — Because backups are binary
and not easily editable/customizable.

Other Forms of MySQL Backups
There are a number of other forms of

backups available; some use exotic DIY
methodologies based on dump and raw
methods outlined above, while some use
commercial backup clients that “talk to”
the database itself. One of the most power-
ful forms of DIY backups is that of using
LVM and file system-level snapshots,
which I’ll look at next.

Snapshot Backups
The theory behind snapshots is that the

file system and/or logical volume system
abstracts you and the database application
from direct disk access. When you ask it
to, the LVM/file system duplicates entire
files or volumes at an instant in time, han-
dling all reads and writes separately from
what’s actually going to disk, and creating
a point-in-time image for you on the tar-
get volume. If you are using InnoDB table
types in MySQL, which are always con-
sistent (or valid) on disk, then you can
effectively get a solid, reliable, “hot
image” of your database and all of its
related files.

May 2006 www.sysadminmag.com Sys Admin — 15

This hot-snapshot method, of course, is not hot for other table
types that are not always guaranteed consistent on disk, such as
MyISAM. And, to ensure consistency, you would need to perform a
lock/flush during the snapshot. Although snapshots are nearly
instantaneous, the fact that you still have to issue a lock/flush (with
MyISAM) technically makes this type of backup “warm”. It may
effectively be considered hot on a non-busy server, but what it
comes down to is that, if you require hot snapshots, you need to be
running InnoDB table types.

Here are some general pros and cons for raw snapshots.

Snapshot Pros: (type of raw)

• Hot — If LVM2 (which supports r/w snaps) is used with InnoDB
tables.

• Instant — At the file system level anyway.
• Scalable — Handled at the LVM/file system level.
• Many DBs — Good for many DBs, especially when using

InnoDB tables.

Snapshot Cons:

• Complex — Needs file systems to be set up already before backups.
• Warm — If other table types (MyISAM) are used, it needs

lock/flush.

Snapshot-based backups really are quite robust and desirable if you
can meet the various file system and database requirements:

• Linux LVM2 or other logical volume system (e.g., Veritas VxVM)
• A file system that you can control/lock (e.g., XFS or Veritas VxFS)
• The reserved drive space to create and maintain LVM snapshots
• Database needs to be InnoDB table types (for hot snapshots)
• Binary logs turned on (for point-in-time recoveries)

Other Snapshots?
There is one other raw method that does what it calls snapshots,

but it’s not an LVM/filesystem-locking type of snapshot. It is more
of a MySQL client-based script that does its own form of lock/flush
and copy, getting all the DBs and bin-logs and tar-gzipping them up
by DB name. It’s called mysqlsnapshot [2]. Since it was only
designed for MyISAM table types, I won’t spend a lot of time on it
here. However, it deserves honorable mention because it was
designed for (and is very good at) copying all the files needed to set
up a slave server from your live production DB. This can help you
quickly get a slave set up if you want to use the replication backup
slave method previously mentioned.

So, as I’m sure you can perceive, LVM/snapshot-based backups
are powerful, but unlike basic dump or raw type backups, they
require a bit of forethought and setup. Next month, I’ll look at some
real-world examples of how to actually perform snapshots. Now,
let’s take a closer look at replication-based backups.

Replication Slave Backups
Replication-based backups, as previously mentioned, can be

set up if you don’t mind throwing another server into the mix.
Some people have been known to run multiple MySQL server
daemons on the same hardware to implement a master/slave
arrangement on the same server, but this type of configuration is
not recommended in a production environment. You typically
do not want your master production database and your slave
backup instance fighting over the same system resources. I sup-
pose you could hard-limit the slave daemon or run it in a virtual
server on the master server, but you do not typically want to
resort to this type of frugality in a production environment. If
you can spare even just some hand-me-down hardware for set-
ting up a dedicated backup slave, that would be better. Figure 1
shows a time-line/process diagram of a master and a slave repli-
cation backup setup.

The progression for this type of backup is shown as four steps:

1. Normal operation of r/w master and r/only slave.
2. The slave is either stopped or Lock/Read/Flushed.
3. The slave is then backed up to disk or tape (if stopped, then raw;

if Lock/Flushed, then raw or dump).
4. Backup finished, and the slave is restarted or UNLOCKed.

Replication Slave Pros:

• Hot — Indirect backups of master (production) server.
• Disaster Recovery — The backup slave can be put into produc-

tion use if the master ever has a catastrophic failure.

Replication Slave Cons:

• Expenses — Requires another whole server to implement.
• Network — Additional network traffic (recommend multi-homing).
• Not Scalable — Not as scalable as other solutions outlined (e.g.,

LVM/snapshots) on very busy servers (slave never catches up in
time for next backup).

Backup Slave Tip: Be sure that you always save your MySQL repli-
cation files like master.info file, your relay logs, relay index, etc.
You’ll need them if you have to reconfigure after a restore.

A backup slave replication setup is easy to configure if you’re
already running a multi-database server or replication server envi-
ronment. Just stand up another slave, write a LOCK/stop
UNLOCK/start backup script, and you’re done. That said, if you
don’t have the space or money to dedicate to this type of setup, you
may want to look at another solution.

If you want to more information on setting up your first replication
server for doing backups, please refer to the book High Performance
MySQL Optimization — Backups, Replication, Load Balancing &
More by Jeremy Zawodny and Derek J. Balling (O’Reilly 2004).

Commercial OTS MySQL Backup Tools
The pointy-haired IT manager types often insist on purchasing

OTS software solutions. They somehow think that do-it-yourself solu-
tions are doomed to mediocrity and eventual failure. If this sounds like
your business environment, the following tools might be for you.

InnoDB Hot Backup, or ibback as it’s known from the command
line, is one of the most well-respected commercial MySQL backup
tools available (http://www.innodb.com/, now owned by Oracle).
It is actually designed by the creator of the innodb engine Heikki
Tuuri and does a nice job of getting all InnoDB and MyISAM table
types backed up safely.

This is usually the first tool that serious MySQL DBAs reach for
if a commercial MySQL backup product is required. It is fairly
priced (as compared to other big-boy, database backup client price
tags) and is really a rock-solid performer.

True Image, by Acronis is the up-and-coming MySQL backup
contender, but it’s a full backup suite (DB and operating system) for
both Linux and Windows. It is, at its heart, a commercial OTS ver-
sion of the LVM/snapshot raw-based methods that we looked at ear-
lier. The cool thing about True Image is that it offers a full-volume,
image-level backup suite that does image clone-based differential
and incremental backups as well as bare metal backup and recovery.
Think of it as Norton Ghost on steroids but for both Windows and
Linux. True Image even has disk-to-disk migration features and a
special boot media environment that allows you to boot into your
backup images.

After talking to one of the developers of True Image Server at
the MySQL user conference last year, the only problem that I see

16 — Sys Admin www.sysadminmag.com May 2006

Figure 1 Time-line view of the master/slave backup
process

with this tool on Linux is that it seems to rely on Linux kernel mod-
ule-based control of the OS file system kernel calls to quiesce (and
control) file system I/O. I really can’t speak from experience about
this tool, but I tend to be cautious about any tool that requires ker-
nel-level wedge-ware. That being said, I would love to hear about
readers’ experiences with True Image Server, as it is giving MySQL
DBAs more options, some of which are pretty nifty.

The Future of MySQL Backups: The Backup API
The much anticipated universal table backup API is slated for

release in the upcoming MySQL v5.1. The significance of this
backup API will make much of the previous discussion of backup
tricks and methods moot. It also makes Oracle and Microsoft very
nervous. In case you have not been following the news, Oracle is
buying up pieces of MySQL and has even tried to buy MySQL AB
itself, albeit unsuccessfully [3]. Stay tuned, as this is a hot topic, and
the upcoming backup API is the new hotness that many a DBA has
been waiting for.

Which Type of Backup Is Right for You?
So far I’ve presented the various types of backups and the pros

and cons of each. But which one is right for you? By now you prob-
ably know, but go ahead and consider these basic questions anyway:

• Do you require online backups? If no, use “Service Stop & Copy”
backups (using raw or dump). If yes, move on to next question.

• Can you afford any interruption (even brief) in write access? If
yes, use warm lock/flush dump, hotcopy, or plain snapshot solu-
tion. If no, go to next question.

• Can you afford a dedicated replication-based backup system? If
yes, build slave system (use mysqlsnapshot to set it up). If no, or if
this is not a feasible solution for your environment, go to next
question.

• Are you using InnoDB table types? If yes, good; use ibback or
LVM-based snapshots for “hot backups”. If no, convert to InnoDB
table types and use ibbackup or snapshots.

Conclusion
To wrap things up for this month, remember that raw backups or

snapshots with regular MyISAM table types end up being warm,
raw backups (i.e., they still need lock/flush). Additionally, it’s not
until you use InnoDB table types that you get the true hot, online
backups, without some type of master/slave replication configura-
tion (which requires additional hardware and network bandwidth to
stay in sync).

Don’t forget about the scalability issues. Dump methods and raw
file copying are commonly used for small- to medium-sized DBs.
Snapshots or OTS solutions are a good fit for larger DBs or many
DBs using InnoDB tables.

Also, take a moment and jot down a few notes regarding the
needs and requirements that you’ve identified for your MySQL
databse environment. You will be able to springboard off those
notes next month to begin to create your own custom MySQL
backup solution.

Next Month: Do the Needful
Okay, now you’ve armed yourself with some preliminary infor-

mation about the various forms of backups and have noted some
important requirements about your own DB environment. You’re
now primed and ready for the details on getting the job done or, in
other words, “doing the needful” [4].

Next month, I will show you how to do almost all of the
MySQL backup methods discussed this month. I will show
detailed examples and concise MySQL backup tips to allow you to
piece together a custom backup solution for your production
MySQL environment. I will also provide some ready-to-use, com-
prehensive MySQL backup system designs to tie everything
together, so stay tuned.

Resources
1. Based on presentation “Ensuring Effective MySQL Backups on

Enterprise Production Systems”, at 2005 MySQL User
Conference — http://conferences.oreillynet.com/cs/ \
mysqluc2005/view/e_sess/7055

2. Mysqlsnapshot — http://jeremy.zawodny.com/mysql/ \
mysqlsnapshot/

3. “Oracle tried to buy open-source MySQL”, cnet —
http://news.com.com/Oracle+tried+to+buy+open-source+ \
MySQL/2100-7344_3-6040197.html?tag=nefd.lede

4. See http://www.cafepress.com/theneedful

Tom holds a BS-EET/Telecom degree from Texas A&M. Since 1999, he has
worked with Rackspace Managed Hosting in the roles of Sys Admin,
Corporate Technical Trainer, Lead Systems Engineer, and liaison between
customer support/security/product/engineering departments. Thomas is the
author of the new book, Linux Troubleshooting Bible (Wiley) and has been
president of the San Antonio technology user group “X-otic Computer
Systems of San Antonio” (xcssa.org) since 1996. “Tweeks” can be reached
via his site: http://theweeks.org/ or at: tweeksjunk2@theweeks.org.

18 — Sys Admin www.sysadminmag.com May 2006

