
 A Slice ofA Slice of
 Raspberry Pi Raspberry Pi
 Original By Spencer Martin Original By Spencer Martin

Revised By Thomas “Tweeks” WeeksRevised By Thomas “Tweeks” Weeks

About Me

Class goals
1)Learning a bit about the python

language

2)Write a final program called
piTempLogger.py that:

● Measures things and outputs
results to a blinking LED

● Output to a 7 segment LED
display to show more data.

● Read temp from a sensor

● Research how to email the
temperature to yourself in
python

192.168.11.X

pi

192.168.11.X

Connecting To Your Pi
From a Laptop

Connect to the Pi using
“Remote Desktop” clients:

● For Windows type:
mstsc /v:ipaddress

● For Mac OSX install/use:
10.6 http://tinyurl.com/mac-rdp-10-6
10.7 http://tinyurl.com/mac-rdp-10-7

● For Linux type
rdesktop u pi g 1024x768 ipaddress

* -In the IP 192.168.11.X where X is your Pi number if on wif

http://tinyurl.com/mac-rdp-10-6
http://tinyurl.com/mac-rdp-10-7

1) Getting Familiar with
the Python Language

Hello world!

Open terminal or command
prompt and type in python

At the “>>>” python
prompt, type in:

 print "hello world"

Hello World!

Your first program

Math and Variables
Try setting a variable by
typing in:

 x = 1

You multiply, divide, add,
subtract using operators:

 * / + -

Print variables by omitting
quotes

 print x

Math and Variables
Try setting a variable by
typing in:

 x = 1

You multiply, divide, add,
subtract using operators:

 * / + -

Print variables by omitting
quotes

 print x

WARNING: Standard
mathematical “order of
operations” applies.
 Remember PEMDAS ?

Input
The command input()
is good for taking
numbers as input from
users and
raw_input() is good
for taking text (without
needing quotes).

 Either quietly prompts
the user to enter data.

Taking input from users

Here's how you might use each:

name = raw_input()
 age = input()

And what it would look like using them:

Writing Multi line programs
• Open the programming

interface called idle.sh
and select File / New
Window

• Type your python
commands into the idle
programming window

• Save-As your program to
“program.py”

• Close all idle windows

• Run your program from the
terminal, by typing in

 python program.py

In Idle, save your program
to a file called “program.py”

For loops

For loops step through lists
(in this case a range of
numbers).

A for loop condition ends with
a colon, and the code block
within a for loop is all
indented by spaces.

for x in range(0, 10):
 print x
print “goodbye”

Doing things against a list

In Idle, save to a file
called ‘forloop.py’

Is X
done?

no

yes

print “goodbye”

print x

Start

For x=
0,1,2,3...10

Stop

For loop

Ifs
If checks a condition and
executes code if the condition
is true.

If conditions end with a colon,
and the code block within an if
is indented with spaces.

for x in range(0, 10):
 if x == 2:
 print(“x is now two”)
 elif x == 3:
 print(“x is now three”)
 else:
 print(x)
print “goodbye”

Conditionals.
If this, then do that.

In idle, save this program
as “forifloop.py”

Is x
= 2 ?

no

yes

print
x is now two

Is x
= 3 ?

no

yes

print
x is now three

If elif
print

x

else

print
goodbye

Exit for

While loops
While loops repeat code while a
condition is true.

Code in while loops are indented
by spaces, and conditions are
ended with colons.

x = 0
while x < 10:
 if x == 2:
 print(“Hello World”)
 elif x == 3:
 print(“Hallo Weld”)
 else:
 print(“Hola Mundo”)
 x = x + 1
print “goodbye”

Saving this as “whileif.py”

Do things while
something is true.

Is x < 10?
no

yes

Do stuff in
while block

print
goobye

While

Exit while

Challenge
Write a 4 function calculator in python that
takes as input, a number, then an operation
(+ - * /), the another number and prints the
answer.

For example: If you input
‘12’ <enter>, then
‘+’ <enter>, and finally
‘13’ <enter>,
then it should print
25 as the answer.

Save into a new
file called “calc.py”

Calculator solution
x = input()
op = raw_input()
y = input()

if op == '+':
 n = x + y
elif op == '-':
 n = x - y
elif op == '*':
 n = x * y
elif op == ‘/‘:
 n = x / y
print(n)

2) Writing piTemoLogger.py
The goal of this class is to learn how to write a python
logger.py program on the RaspberryPi we will
eventually build up to a program called
piTempLogger.py that will:

● measure the room temperature,

● displays it on a seven segment LED,

● If we finish everything else, email the data to
ourselves.

2) Writing piTemoLogger.py
But to do all this, we must first learn how to:

● Talk to the outside world using the Pis GPIO port

● Output data to a 7 segment “595 driver” LED display

● Write nested loops and conditionals

● Read the temperature from a DS18B20 temp probe

● Send email to Gmail over SMTP using python

2) Writing piTemoLogger.py
But to do all this, we must first learn how to:

● Talk to the outside world using the Pis GPIO port

● Output data to a 7 segment “595 driver” LED display

● Write nested loops and conditionals

● Read the temperature from a DS18B20 temp probe

● Send email to Gmail over SMTP using python

Let's get Started!!

GPIO Port Support
The RaspberryPi's GPIO, or
General Purpose
Input/Output port, is your Pi's
gate to the outside world. It can
be used to read values for
sensors, or activate LEDs or
motors.

It is used in python by
importing (or loading) the GPIO
module like this.

 import RPi.GPIO as GPIO

GPIO Port
Hardware

GPIO Port
Software

Start saving
into “logger.py”

GPIO Pin Secret Decoder Ring
(keep this handy)

3v33v3 GNDGND

GPIO 22GPIO 22

Here's how to hook up the Pi
(GPIO22=pin15) to your
breadboard and LED. Note
that your kit may have a big
rainbow ribbon cable and “T”
shaped board connecting
your Pi to the breadboard.
Do not go beyond this section
until you have it working.

TA Initials

Blinking an LED

(pin15 in code)(pin15 in code)

NOTE: before hooking this up
POWER OFF! After it's hooked up
as seen below, get TA write of
before powering up. Not doing
so can let the magic smoke out
and (cost you $40).

#This imports the GPIO module
import RPi.GPIO as GPIO
#This imports time for sleep function
import time

#initialize GPIO to use Raspberry Pi pinouts
GPIO.setmode(GPIO.BOARD)
#set pin 15 to output mode
GPIO.setup(15, GPIO.OUT)

while True:
 #Turn on LED and wait 1 second
 GPIO.output(15,True)
 time.sleep(1)
 #turn off LED and wait 1 second
 GPIO.output(15,False)
 time.sleep(1)

Continue saving
into “logger.py”

After importing the GPIO module (software) and connecting up the previous circuit
(hardware), here's how we program the GPIO pinouts (pin 15 below = GPIO22 on
the Pi's GPIO pins). After running this program, if your hardware is all correct, your
program should slowly turn the LED on, wait, and turn it of. Get TA sign-of below.

TA Initials

Blinking an LED

3v3 GND

GPIO 22

GPIO 23
Note that the push button
switch connects GPIO23(pin
14) to the + (3v) row when
the button is pushed. This
puts a logical “1” (True or
High) on pin 14, which we will
read in and output to pin
15(GPIO22). Get this working
and signed of before
continuing.
 TA Initials

Input from buttons
After you have the LED
blinking, we're going to hook
up a push button switch, read it,
And output the state to the LED.

#get access to GPIO module
import RPi.GPIO as GPIO

#set up pins
GPIO.setmode(GPIO.BOARD)
GPIO.setup(14, GPIO.IN)
GPIO.setup(15, GPIO.OUT)

#check whether button is pressed and
#change LED accordingly
while True:
 button = GPIO.input(14)
 GPIO.output(15,button)

Continue saving
into “logger.py”

After connecting the push button switch to the Pi's GPIO23 (pin 14,
in the code below), add the new lines of code from the program
below. The button program will watch the button state, and if
pressed (True), it will output that logic “True” state (on) to the LED
output pin, turning on the LED. Be sure to get TA sign-of (below).

TA Initials

Input from buttons

Blinker
Challenge

Using your logger.py code as a starting place
(saving it to blinker.py) modifying the code so
that the Pi blinks the LED while the button is
released, and stops blinking when the button is
pressed.

SaveAs to a new program
called “blinker.py”

Blinker
Solution

#import GPIO module
import RPi.GPIO as GPIO

#import time for sleep function
import time

#initialize GPIO to use
#Raspberry Pi pinouts
GPIO.setmode(GPIO.BOARD)

#set pin 15 to output,14 as input`
GPIO.setup(15, GPIO.OUT)
GPIO.setup(14, GPIO.IN)

while True:
 button = GPIO.input(14)
 while button == True:
 print 'waiting'

 #turn on LED and wait 1 second
 GPIO.output(15,True)
 time.sleep(1)

 #turn off LED and wait 1 second
 GPIO.output(15,False)
 time.sleep(1)

Save to “blinker.py”

Using 7-segment LED
display modules

The seven-segment LED module “shifts” in the display number
data into those two small “74LS595” TTL driver chips. As a result,
this module only needs to be hooked up to ground, power (3.3v),
a DATAinput, and two clock lines. If you hooked up eight
7-segment LEDs directly, it would take over 64 wire connections
plus a bunch of electrical resistors!

If interested in how these chips work
(or digital logic), then see the spec
sheet for this common “TTL chips”*.

* - http://www.ti.com/product/SN74LS595/technicaldocuments

http://www.ti.com/product/SN74LS595/technicaldocuments

3v33v3

GNDGND

GPIO 22GPIO 22

GPIO 23GPIO 23

GPIO 27GPIO 27
GPIO 17GPIO 17
GPIO 18GPIO 18

Connecting 7-segment module
NOTE: before hooking this up
POWER OFF! After it's hooked up
as seen below, get TA write of
before powering up and testing
it with code. Neglecting TA signof
Could “eat your pie”.

TA Initials

• 7 segment “595 driver” displays
require a custom module called
PiSlice.py (in LCBB-Pi dir)

• Initialize display by using
PiSplice.init()

• Output to the display by using
PiSlice.number=n

Create a new program called “test-led.py” that will
use this new 7 segment LED display.

Make a new program and
save it to a file “testled.py”

import PiSlice #load module
#DATAIN=13, CLOCK=11, LOCK=12
PiSlice.init() #initialize

#This displays numbers
PiSlice.number = 12345678

Programming a 7-segment
LED module

Counter
Challenge

Modify your logger.py
program to use the
7-segment LED module,
count your button
presses, and add each
press to the LED
display (starting at zero).

Open existing “logger.py”
and continue coding in it.

TA Initials

Counter
Solution
#import GPIO module and PiSlice module

import RPi.GPIO as GPIO
import PiSlice

#start up 7 segment display

PiSlice.init()

num = 0

while True:
 button = GPIO.input(14)
 while button == 0:
 button = GPIO.input(14)
 while button == 1:
 button = GPIO.input(14)
 num = num + 1
 PiSlice.number = num

Open existing “logger.py”
and continue coding in it.

Sensing temperature

The 1-wire DS18B20 temperature
sensor is a fully embedded, 12bit,
serial (i2c) interfaced temperature
probe that is perfect for simple, fast
temperature data logging in
many modern projects.

All you do it provide it power, ground,
and “one wire” for serial communications

We're talking to it using our PiSlice.py
python module. (next)

3v33v3

GNDGND

GPIO 22GPIO 22

GPIO 23GPIO 23

GPIO 27GPIO 27
GPIO 17GPIO 17
GPIO 18GPIO 18

Connecting 1-wire Temp Sensor
NOTE: before hooking this up
POWER OFF! After it's hooked up
as seen below, get TA write of
before powering up and testing
it with code. Neglecting TA sign-of
will result in public humiliation.

TA Initials

GPIO 4GPIO 4

import PiSlice

PiSlice.init()
PiSlice.init_temp()
while True:
 c, f = PiSlice.read_temp()
 PiSlice.number = f

Now to use the 1-wire temp
sensor, we're just importing the
PiSlice.py module, initializing it,
and calling PiSlice.read_temp() like
this (below). The code below will do
this and then output the fahrenheit
value to the PiSlice.number output
(LEDs).

TA Initials

Get it
working?

Coding for the 1-wire
Temp Sensor

Create a new program
called “temp.py”.

Now you have the temp sensor
working and the previous LED code
from logger.py. Now combine them
to:

● Measure the temperature once per second

● Display the temperature on
7-segment LED display

TA Initials

Combine Temp Sensor
and 7-segment LED

Combine “temp.py” and
the needed code from
“logger.py” into a new
program “piTempLogger.py”.

+

Pi in the sky
Getting your Raspberry Pi project online

Email Your Temp Data

• Python can send and
receive emails using the
SMTP protocol.

• You can send yourself data
logged from the pi over
email

• Your email address is
LetsCodePi@gmail.com

• Ask instructor for password

http://gmail.com/

Sending emails

import smtplib
fromaddr = 'LetsCodePi@gmail.com'
toaddrs = 'to@addr.com'
msg = 'testing'

Credentials (if needed)
username = 'LetsCodePi@gmail.com'
password = 'LetsCode'

The actual mail send
server = smtplib.SMTP('smtp.gmail.com:587')
server.ehlo()
server.starttls()
server.ehlo()
server.login(username,password)
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

In a new file
called ‘mail.py’

http://gmail.com/
http://gmail.com/

Final challenge

Make a program based of of the button counter
that can show the number of emails you have
and the current room's temperature. Cycle
through these modes by pressing the button
and display your output on the 7 segment
displays.

In ‘logger.py’

	A Slice of Raspberry Pi
	Slide 2
	Class goals
	Slide 4
	Python
	Hello world!
	Math and Variables
	Slide 8
	Input
	Multi line programs
	For loops
	Ifs
	While loops
	Challenge
	Calculator solution
	Slide 16
	Slide 17
	Slide 18
	GPIO
	Slide 20
	Slide 21
	Blinking an LED
	Slide 23
	Input from buttons
	Challenge
	Blinker solution
	7 segment displays
	Slide 28
	Slide 29
	Challenge
	Counter solution
	Sensing temperature
	Slide 33
	Slide 34
	Pi in the sky
	Email
	Sending emails
	Final challenge

