
Let's Code
Blacksburg's

Arduino
Cookbook

Version .1 11/2013

Blink Recipe
What:

Arduino Software and driver should be installed. (See install page).

Select appropriate port
“Tools” “Serial port”

Select Arduino Uno.
“Tools” “Board” “Arduino Uno”
Load blink onto the arduino.

Look for the light blinking here.

Change both lines that say delay(1000); to
delay(100); and reupload the program.

Look for the light to blink faster. This shows
that the program changes you made are
actually uploaded to the Arduino.

How:

This process compiles and uploads code to the
Arduino for execution.

There is a small LED (the light) connected to
pin 13 of the Arduino. When that pin is 'high'
(meaning +5 volts for this Arduino clone), the
LED lights. This is done by the command
digitalWrite(led, HIGH);

When pin 13 is 'low' (meaning connected to
ground) the LED (light) is off. This is done by
the command digitalWrite(led, LOW);

Note that anything following “//” on a line is
considered comments and ignored by the
compiler.

Fail:

Verify the correct serial port - tools menu
Unplug Arduino and list serial ports,
then plug up Arduino and llist serial ports again. An additional serial port should appear. That new
serial port should be the Arduino port.
Try pluging Arduino into a different port USB port
Reboot your computer.
Test with a different cable and Arduino board.

Illustration 1: Arduino Clone with power and "blink" light

Illustration 2: Loading the "blink" program in the Arduino IDE

Serial Monitor Recipe

What:

Upload and execute the following sketch on the Arduino.

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}

void loop() {

 Serial.println("Hello World");

 // wait 1 second before the next loop
 delay(1000);
}

Then open the Serial Monitor by selection “Tools” and “Serial Monitor”.
You should see the line “Hello World” appear repeatedly in the window.

How:

Serial Begin opens the serial port at on the Arduino and sets its speed to 9600 baud
The Serial.println statement prints a line followed by a newline.
When the Serial Monitor is opened it looks for characters appearing on the laptop serial port and prints
them in the window.

Fail:

Look for RX and TX lights to blink on Arduino rapidly during upload.
If program is running successfully look for the TX light to blink once per second, showing that it is
“trying” to transmitting data back to the laptop.
Double check your Serial Monitor settings for both port and speed.

Note: you have to restart the Serial Monitor after each upload of a new program, because the upload
process uses the same serial port connection.

Breadboard or Protoboard Recipe

How does a breadboard work?
Wire pins, pushed into the breadboard are connected together as shown in the schematic below. This
allows the quick building and testing of circuits.

Note: Unplug the Arduino from the laptop (and any other power supply while making and verifying
connections).

Connection wire colors do not matter; but traditionally power (+) wires are red and ground (-) wires are
black and those choices can help make troubleshooting a little easier.

Protoboard schematic from Wikipedia

Illustration 3: "breadboard" or "protoboard"

Illustration 4: Protoboard schematic. -Wikipedia

Potentiometer Recipe

What:
Firmly insert the potentiometer (also called a “pot”) into the breadboard.
Connect the leftmost side to power and the rightmost side to ground.
The middle connector is the output of the pot in this case.
Connect it to an analog in pin on the Arduino.

A0 is a good place to start.

Verify the circuit by reading and printing the pot value.

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}

void loop() {
 int sensorValue0;
 sensorValue0 = analogRead(A0); // read the analog input
 Serial.print ("Pot 0 value=");
 Serial.println(sensorValue0);

 // wait 1 second before the next loop
 delay(1000);
}

Turn the pot left and right, the printed value should go from (near) 0 to (near) 1023

How:
The potentiometer implements a voltage divider circuit with “two” variable
resistors. The out pin should vary as the potentiometer knob is turned from
0 volts (ground) to 5 volts. That is the value of the voltages applied on the
outside pins. /*/

Fail:

Verify the pot is seated firmly in the protoboard
Verify 5 volts across the Pot with a multi-meter
ground one lead of the multi-meter and look for a varying voltage on the
output pin of the pot.
Are you reading the input value into a variable?
Are you printing the correct variable for testing?
/*/ Discuss 'deadband' and “print on change”

Servo Recipe

Connect a servo to the Arduino.

Use a 3 pin header to connect the servo to the protoboard.
• Connect the brown wire on the servo to ground.
• Connect the red wire on the servo to the Vin pin on the Arduino.
• Connect the orange wire to pin 9 on the Arduino.

Use the following code to test the servo.

#include <Servo.h>
// create a servo object
 Servo servo0;

void setup() {
 servo0.attach(9); // servo is attached to pin 9
}

void loop() {

 servo0.write(60); // tell servo to go to the 60 degree position
 delay(1000); // wait 1 second
 servo0.write(120); // tell servo to go to the 120 degree position
 delay(1000); // wait 1 second

}

Look for the preceding code to move the servo to the “60 degree” position, wait 1 second, then move
the servo to the “120 degree” position. The actual movement degree may vary somewhat depending on
the servo. The initial position of the servo horn may be changed by gently pulling it up, off the servo,
turning it and then pressing it back down, re-engaging the “teeth” in a different rotational position.

How:
The position of a servo is set by sending
it a 1 – 2 millisecond pulse. A 1ms pulse
represents approximately 0 degrees. A
1.5 ms pulse represents approximately 90
degrees. A 2 ms pulse represents a servo
position of 180 degrees.

This pulse should be sent every 20 ms or
so. The exact timing between pulses is
not critical.

While we could easily write code to
pulse the servo control the proper time
(between 1 and 2 ms) every 20 ms, the
Servo library used above takes care of
that for us and can control multiple
servos simultaneously.

Note, servo range may vary; not all servos have a full 180 degree range.

Fail:

Unplug servo power line an plug in back in. Listen for servo to make a small move if power is
connected properly.

Servo's can consume more power than available from the Arduino and from laptop USB port. Try
connection the battery pack for additional power.

Check that the values printed to the Serial Monitor make sense as the pot is moved.

Make sure the orange wire is connected to the correct pin in the Arduino, especially if there is more
than one servo connected. Change to servo control pin defined in the software if necessary.

If the electrical connections are suspect, try replacing the 3 pin headers with 3 jumper wires

Note: placing a 330 ohm series resistor on the servo input line is a good idea to help protect the circuit
in case of mis-wiring

Illustration 5: Source: seattlerobotics.org

Potentiometer Control of a Servo's Position Recipe

In order to use a potentiometer to control a servo:
• Build the potentiometer circuit connecting the pot output to the Arduino pin A0 (analog 0).
• Build the Servo circuit connection the servo input wire to Pin 9 of the Arduino.
• Use the program below

Here is a sample of how it could be wired up.

After testing the Pot and servo
separately use the following code to
test Servo control by a
potentiometer.

Turning the pot left and right
should cause a corresponding
rotation in the servo.

The servo may move “faster” or
“slower” than the pot depending on
the map in the code below.

(We are using the values 30 to 150
for the degree settings, because
some servo's have difficulties at the
extremes of their movement.)

#include <Servo.h> // servo library
// create a servo object
 Servo servo0;

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
 servo0.attach(9); // servo is attached to pin 9
}

void loop() {
 int servo0Setting=90; // for the servo position later

 // Read Pot value
 int sensorValue0;

 sensorValue0 = analogRead(A0);

 Serial.print ("Pot 0 value=");
 Serial.println(sensorValue0);

 // Map the pot reading to the servo degree setting
 // we'll use 30 to 150 degrees for the servo

 servo0Setting=map(sensorValue0,0,1023,30,150);
 Serial.print (" Servo 0 setting=");
 Serial.println (servo0Setting);

 // Set Servo position
 servo0.write(servo0Setting); // tell servo to go to the designated position

}

Fail:
You can change the direction of the servo to potentiometer mapping by swapping the pot input values
in the map statement.
e.g. change this:

 servo0Setting=map(sensorValue0,0,1023,30,150);
to this:
 servo0Setting=map(sensorValue0,1023,0,30,150);

Of course different pins for the pot and servo may be used, but the test program will have to be
modified to match.

Building Monta's Robot Drawing Arm Recipe

1. Glue together servo base
1. position 2 touching craft sticks at approximately 90 degrees
2. see picture to obtain the proper orientation of the spacer block (“narrow edge on top”)

3. hot glue the 2 craft sticks together using the wooden spacer block
4. hot glue servo1 to spacer block

5. cover center of the flat side of both servo horns with a corner of tape to make sure the hot
glue will not go through the center hole. (I'll repeat this step below for those that didn't see
it here :))

Note: when building the arms, be sure to leave a little space at each end of the craft stick (perhaps .5
centimeter or so). If the arms are too long, the pencil may leave the edges of the paper when drawing
and catch on the paper edge.

2. Build Arm 1
1. cover the centers of the flat side of the servo horns with a corner of blue tape
2. hot glue servo horn on one end of the craft stick
3. hot glue servo2 on the other end with shaft toward the middle of the stick

3. Install cable servo extension cable to servo 2 noting the polarity
1. Remove the 3 pin header from servo wire (if attached)- leave it in the protoboard
2. The black wire from the extension cable should be on the same side as the brown wire from

the servo (and the white wire should be directly across from the orange wire)

Illustration 8: Servo extension cable

Illustration 7: Arm 1 Illustration 6: Arm 1

4. Build Arm 2
1. Cover the center of the flat side of the servo horn with a corner of blue tape
2. Attach servo horn to arm 2 using hot glue (pencil will be attached later)

5. Use blue tape to tape the servo base (with servo) to the table, leave some space near the servo
for the drawing paper to slide under later (perhaps 5 cm).

Illustration 9: arm 2 construction

6. Fit the arms on the servos
1. Turn both servos to their rightmost position using the potentiometers
2. Press the arms and servos together in the position as seen in picture (to maximize drawing

area of the arm). The arms are pressed onto the servos, with the servo horn fitting on the
toothed servo shaft. Exact placement isn't critical, and the arms may have to be turned
slightly in order for the teeth on the servo to line up with the servo horns. The hole on Arm
2 should be as close to servo 1 as practical without binding.

3. A small dot of hot glue, or piece of tape directly over the shaft of servo 1 can be used to
hold servo 2's wire in place during arm movement.

Illustration 11: Robot arm fit, photo 2

Illustration 10: Robot Arm Fit photo 1

7. Fit Pencil
1. First retract pencil lead fully
2. Hot glue pencil in place, lifting

the arm slightly until the hot
glue cools. This is to make sure
that there is some pressure on
the pencil tip when it is finished.

3. After glue has cooled extend
pencil lead.

4. You may want to change the
direction of the servo(s) to match
the expected potentiometer
direction. See the Servo Recipe,
fail notes for details.

FAIL
Extend the pencil lead further than normal
Strategically place a penny under the “base” to level arm 1
Hot glue some pennies near the pencil on arm 2 to increase downward force
Pry apart pieces that are glued together and re-glue them to level arm 2
Tape servo wires to the table to keep them out of the way and prevent them from being pulled loose

FutureRecipes to Add
Installing Arduino Software and drivers

linux
mac
windows

Arduino Coding
program sections
reference commands
compile and upload

Light and external LEDs
20ma limits
resistor
pin modes
dim light means port wasn't set to output
pwm

Drive a motor / transistor
20ma limits
biasing a transistor
pin modes
pwm

Resistors and Ohms law recipe
Using a multi-meter
Ultrasonic Distance Sensor
Infrared detectors
Passive Infrared detectors
bluetooth
soldering skills

far future
GPS
9 DOF GYRO
USB hids devices

