 [Any blue text should be replaced by instructor using material and font color changed to black.]
Course Title
Term: (Fall, Spring, Summer, Winter) 20XX

Laboratory Exercise X – Compromised Server Securing and Lockdown
Due Date: Date
Points Possible: Number of points out of total course points or recommended percent of course grade.

1. Overview

This laboratory exercise provides hands-on experience with evaluating (scanning), identifying, and correcting vulnerabilities on an infected server.

2. Resources required

An Internet connected web browser and student login to the Cyber Range is required to complete this lab. Once in the Cyber Range, it requires access to two CentOS Linux VMs: one pre-configured infected server named server.example.com and audit server from which you can scan and test the infected server named audit.example.com.

[Note to instructors: This lab exercise requires an account on the Cyber Range. To sign up for an account on The Range, please visit our Sign-Up page. Your students will also require an account on the Cyber Range; this will be explained in the setup of your course.]

3. Initial Setup

Log into the Cyber Range. Once logged in, select the Compromised Server Securing and Lockdown lab and the click "Join Exercise" button.

Within your browser, you will be presented with a ssh terminal Linux login screen. Log in using these credentials:

Username: student
Password: V4CR-d3W0rm1nG

You should now be logged in to a terminal session on server.example.com within your browser window. This machine is server.example.com where most of your work (on the server) will actually take place.

Since there is no graphical interface, and you will need a second login terminal to the audit system audit.example.com, you will need start a screen session (on the main server) so that you can switch between the main server and a second ssh session to the audit.example.com system. Follow the steps below to start your screen session. (NOTE: If you have never used screen before, here’s a good screen tutorial: https://www.youtube.com/watch?v=hB6Y72DK8mc)

1. Start a screen session:
To start a screen session on server.example.com, just type screen. This will open screen and place you at a new shell session:

	[student@server ~]$
	[student@server ~]$
	[student@server ~]$ screen
(the screen will clear, and drop you into a new shell in your screens session)
		[student@server ~]$

TWW SCREEN NOTES:
$ screen
	CTRL-a (release) SHIFT-S	# To do to split screen to two regions
CTRL-a TAB				# To flip to lower region
CTRL-a c				# Top open new screen window in region
$ ssh student@audit.example.com	# To log into audit servers
$ sudo su -				# To become root on audit server

2. Open a new screen window:
Now within screen, hit keys <CTRL>-a (release) and then C, which will open a new screen window. <CTRL>-a (release) a will toggle between your two screen windows, and <CTRL>-a (release) n will go to the Next screen window (if you have more than two open). Use <CTRL>-a (release) ? to get help using screen.

3. Open a second ssh session to audit.example.com:
On one of your screen windows, ssh to the machine audit.example.com, and use
 sudo su - to become root:

	$ ssh student@audit.example.com
	[student@audit ~]$ sudo su -	# prompts you for your own password
		[root@audit ~]#			# now you ARE the root user

and switch back and forth between your server and audit systems using <CTRL>-a a to verify you are logged in to both of your systems at the same time.

NOTE: You will use the audit session later when you will need to nmap scan your server from the audit system. nmap is the preferred sysadmin and network security tool of choice when quickly scanning systems to check to see what ports and services are exposed.

TIP: sudo is the command that allows unprivileged users to run system or root level commands. Using sudo to invoke su - allows a normal user to become root. Don’t forget the tailing “-“ with su. That is what tells the system to load that user’s environment and path settings. The password sudo prompts you for is your student password.

4. Tasks

Challenge

On the server.example.com machine, using the general strategy (tasks below) and Cheat Sheet Commands handout, evaluate the integrity of your system by:
· scanning your systems network profile locally and remotely
· identifying any non-standard network profile/port bindings
· identifying what processes are responsible, killing those processes, verifying they cannot re-spawn after a reboot, and
· verifying system binaries (in /bin, /sbin, /usr/bin/, /usr/sbin/ and /usr/local/) are all “clean” at a basic level (files in these areas should all pass rpm verification checks.. especially MD5sum fingerprint verifications)
· remove and clean up any compromised system files or configurations
· End goal: Verify that system in a stable, semi-secured state after reboots (can never 100% sure after a system/root level compromise happens)

Read the questions in the Questions section below and keep them in mind as you complete the following tasks to secure and “de-worm” the compromised server (server.example.com):

Task 1: Examine Port Bindings & Port Scans

· On system server, look at the IP/port bindings and see what’s running (netstat)
· On system audit, scan server (using nmap on the audit server, ports 1-10,000)

NOTE: See the Cheat-Sheet Commands Handout for help on the various steps above and below. Read man pages, e.g. man netstat, if something doesn’t make sense.

Task 2 Examine Running Services: (chkconfig, service, ps, etc.)

· Compare Running vs Configured Services: Compare the bound vs running services
· Stop & Start Services: On server, try stopping each service (not sshd) and reuse netstat

Task 3: Persistent Network Lockdown

a. Lock down unused ports (edit /etc/sysconfig/iptables file)

WARNING: BE CAREFUL! Don’t block ports 22 or 3389 or you can lock yourself out!

NOTE: If you do lock yourself out, you may need to exit your web session, and “reset” your lab exercise, effectively losing the work you’ve done.

Task 4: Stop Rogue Processes

· Kill Any Rogue Services: On server.example.com, try a killall httpd and re-run netstat -antp a few times and see what happens. Try rebooting.. checking again.
· Kill any rogue processes (use ps & kill PIDs w/unexpected port bindings)

Task 5: Verify System Packages

· Check for any corrupted system binaries, system scripts or config files (rpm -Va), looking for any md5sum changes

Task 6: Repair System Packages

· Repair any corrupted/compromised system binaries (can use rpm), and remove any suspicious files (rm and/or yum install ...)

Task 7: Reboot Check (YOUR GOAL)

· After completing the last few steps, reboot and verify that there are no more rogue binaries and port bindings persisting, that the system passes an rpm -Va | grep bin/ check (that returns nothing), and that this semi-safe state persists across reboots (w/first four strategy steps above).

TIP: If the system seems to “reinfect” itself after every reboot (i.e. you can see strange port bindings with the netstant -antp command as root), then Google the “centos 6 boot process” (after the kernel is loaded), and find out what boot scripts are invoked and control the system at boot time.

Questions:

Answers the following questions about what you discovered as you stepped through the tasks above.

Q1. What ports did you find listening on the server’s public IPs (0.0.0.0) and what processes were associated with each? How did you get this information (list specific commands & switches)?

Q2. What does it mean to be a standard port binding? Which of the ports/process combinations from Q1, above, are non-standard bindings? How do you know they are non-standard?

Q3. What actions did you take to block non-standard ports? How did you ensure they were still blocked on reboots?

Q4. How did you stop any non-standard port bindings or rouge processes? How did you ensure these processes didn't return on reboot?

Q5. What does it mean for a system binary to be “clean”? Which system binaries were not clean and how did you discover this?

Q6. What actions did you take to repair the bad binaries?

Q7. What other changes did you make to server to make it more safe and stable across reboots?

5. References

· Cheat Sheet Commands Handout

[This portion of the lab exercise template is provided for instructors that will be using this lab in a class they are teaching.]

KSAs, from NIST SP 800-181: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-181.pdf

Knowledge:
· K0033: Knowledge of host/network access control mechanisms (e.g., access control list).
· K0224: Knowledge of system administration concepts for Unix/Linux and/or Windows operating systems.
· K0537: Knowledge of system administration concepts for the Unix/Linux and Windows operating systems (e.g., process management, directory structure, installed applications, Access Controls).
· K0608: Knowledge of Unix/Linux and Windows operating systems structures and internals (e.g., process management, directory structure, installed applications).

Skills:
· S0007: Skill in applying host/network access controls (e.g., access control list).

Knowledge Units (KUs) Addressed:
From: https://www.iad.gov/NIETP/documents/Requirements/CAE-CD_2019_Knowledge_Units.pdf
[bookmark: _Hlk7010397](you may need to accept an invalid iag.gov SSL certificate to reach this PDF)

· Cybersecurity Foundations (CSF)

[bookmark: _GoBack]© 2022 Virginia Cyber Range. Created by Thomas Weeks. (CC BY-NC-SA 4.0)
