Success Stories

8 true tales
of flexibility,
speed, and
improved
productivity

Industrial Light & Magic
LivingLogic AG
Rackspace

Siena Technology
United Space Alliance
Wing IDE

University of St Andrews

Journyx
“We achieve immediate functioning code so much faster in

Python than in any other language that it's staggering.”

—Robin Friedrich United Space Alliance

O REILLY




Essential Tools for Success with Python

ORELLY

PY_ThOn,_L._,
i XML

L

O'RELLY

SIRERLY 4 . ORELLY

OREILLY"

Order Now
See back page for order form. Or call 800-998-9938

O’RE'LLY python.oreilly.com



Introduction

by Alex Martelli & Guido van Rossum

Python is widely admired for its simplicity
and elegance. However, these undeniable
qualities must not overshadow Python’s
usefulness: with Python, you *can get

the job done*!

Python is highly scalable—suitable for large
projects as well as for small ones, excellent
for beginners yet superb for experts. It is
stable and mature, with large and powerful
standard libraries, and a wealth of third-
party packages for such widely varied tasks
as numerical computation, Internet and web
programming, database use, graphical user
interface development, XML handling,
image processing, three-dimensional
modeling, and distributed processing with
CORBA or SOAP. Python plays well with
others, easily integrating with either C/C++
or Java you can extend it, you can embed
it in your existing applications, and you
can use it to integrate multiple applications.
This booklet illustrates Python’s usefulness
by presenting a small sample of Python
success stories, real-life examples where
Python played a central role in the devel-
opment and delivery of working, useful
software systems of substantial size. The
systems are in a wide variety of application
areas, and they go up the scale, all the
way to enterprise-wide integrated systems.
Thus, you'll see that Python is not just

a scripting language (not limited to coding
small and simple scripts, even though its
quite suitable for such frequent, small
tasks), nor is its usefulness confined to any
one application area. In the hands of experi-
enced software developers, Python offers
high productivity for projects of all sizes,
in all application areas.

Python’s usefulness comes exactly from its
simplicity and elegance, harmonized into a
seamless whole by its highly pragmatic design.

Engineers since the Roman Vitruvius have
recognized that a good design exhibits
solidity (firmitas), delight (venustas), and
usefulness (utilitas). Italian architect, Leon
Battista Alberti showed during the
Renaissance that these characteristics are
achieved by harmony (concinnitas) the
art of ordering disparate parts into an
organized whole. Python’s design makes
these theories come to life, no less than
Alberti’s Tempio Malatestiano.

Managers love Python because its simplicity
minimizes programmers’ learning efforts,
but the same simplicity underpins Python’s
solidity, avoiding any bugs related to
obscure, misunderstood and ad-hoc features,
in both the language’s implementations and
programs coded in Python. Designers are
drawn to Python’ elegance, which allows
concise and readable expression of design
ideas, but the same elegance and readability
ease maintenance, modification and reuse
for programs coded in Python. The ease of
interfacing Python to existing C/C++ or Java
libraries and applications, plus Python’s
large standard library and the wealth of
existing third-party Python extensions,
combine to make Python the ideal
language for challenging integration tasks,
no less than for “green-field” development
projects. All together, these characteristics
make Python the language of choice for
high-productivity software development—
one of the most rapid development
environments on the planet.

Once this booklet has whetted your
appetite, you can explore Python further,
starting at Www.python.org. For many
excellent books about Python, and for
additional Python success stories,

see python.oreilly.com.



Industrial Light & Magic Runs on Python

About the Author

Tim Fortenberry joined Industrial
Light & Magic in 1999 as an
intern. Later that same year
he began to work full time in
the Resources department.
He worked as a scripts/tools
programmer. Shortly after,
Fortenberry joined the Research
and Development department.
He is one of the founding
members of the Pipeline and
TD Tools groups that helped
bridge the gap between artists
and technology.

As an engineer, Fortenberry is
responsible for developing and
maintaining the myriad of appli-
cations used for rendering and
pipeline control flow of images
at ILM. Prior to joining ILM,
Fortenberry worked as a Linux®
systems administrator for VA
Linux Systems.

Originally from Southern
California, Fortenberry received
his Bachelor of Arts degree from
the University of California at
Berkeley in Anthropology with
an emphasis in Archaeology.

www.ilm.com

Tim Fortenberry

Background

Industrial Light & Magic (ILM) was started in 1975 by
filmmaker George Lucas in order to create the special
effects for the original Star Wars film. Since then, ILM
has grown into a visual effects powerhouse that has
contributed not just to the entire Star Wars series, but
also to films as diverse as Forrest Gump, Jurassic Park,
Who Framed Roger Rabbit, Raiders of the Lost Ark, and
Terminator 2. ILM has won numerous Academy
Awards® for Best Visual Effects, not to mention a string
of Clio awards for its work on television advertisements.

While much of ILM5 early work was done with
miniature models and motion controlled cameras,
ILM has long been on the bleeding edge of computer-
generated visual effects. Its computer graphics division
dates back to 1979, and its first CG production was
the 1982 Genesis sequence from Star Trek II:

The Wrath of Khan.

In the early days, ILM was involved with the creation
of custom computer graphics hardware and software
for scanning, modeling, rendering, and compositing
(the process of joining rendered and scanned images
together). Some of these systems made significant
advances in areas such as morphing and simulating
muscles and hair.

Naturally, as time went by many of the early innova-
tions at ILM made it into the commercial realm, but
the company’s position on the cutting edge of visual
effects technology continues to rely on an ever-changing
combination of custom in-house technologies and
commercial products.

Today, ILM runs a batch processing environment
capable of modeling, rendering and compositing tens

of thousands of motion picture frames per day.
Thousands of machines running Linux, IRIX®,
Compaq® Tru64®, Mac OS® X, Solaris®, and Windows®
join together to provide a production pipeline with



approximately eight hundred users daily,
many of whom write or modify code
that controls every step of the production
process. In this context, hundreds of
commercial and in-house software compo-
nents are combined to create and process
each frame of computer-generated or
enhanced film. Making all this work, and
keeping it working, requires a certain degree
of technical wizardry, as well as a toolset
that is up to the task of integrating diverse
and frequently changing systems.

Enter Python

Back in 1996, in the 101 Dalmation days,
ILM was exclusively an SGI IRIX shop, and
the production pipeline was controlled by
Unix® shell scripting. At that time, ILM was
producing 15-30 shots per show, typically
only a small part of each feature length film
to which they were contributing.

Looking ahead towards more CG-intensive
films, ILM staff began to search for ways
to control an increasingly complex and
compute-intensive production process.

It was around this time that Python version
1.4 came out, and Python was coming into
its own as a powerful yet simple language
that could be used to replace Unix shell
scripting. Python was evaluated, compared
to other technologies available at the time
(such as Tcl and Perl), and chosen as an
easier to learn and use language with which
to incrementally replace older scripts.

At ILM, speed of development is key, and
Python was a faster way to code (and re-
code) the programs that controlled the
production pipeline.

Python Streamlines Production

But Python was not designed just as a
replacement for shell scripting and, as it

turns out, Python enabled much more
for ILM than just process control.

Unlike Unix shell scripting, Python can

be embedded whole as a scripting language
within a larger software system. In this case,
Python code can invoke specific functions
of that system, even if those functions are
written in C or C++. And C and C++ code
can easily make calls back into Python
code as well.

Using this capability, ILM integrated Python
into custom applications written in C or
C++, such as ILM5 in-house lighting tool,
which is used to place light sources into

a 3D scene and to facilitate the writing,
generation, and previewing of shaders
and materials used on CG elements. It is
the lighting tool that is ultimately respon-
sible for writing the 3D scene out to a
format that a renderer can interpret

and render.

At the same time, more and more compo-
nents, such as those responsible for ILM’s
many custom file formats and data structures,
were re-wrapped as Python extension modules.

As Python was used more widely, extending
and customizing in-house software became
a lot easier. By writing in Python, users
could recombine wrapped software compo-
nents and extend or enhance standard CG
applications needed for each new image
production run. This let ILM staff do
exactly what production needed at any
given time, whether that meant allowing for
a specific look for an entire show, or just a
single CG character or element.

As it turned out, even some of ILM’s non-
technical users were able to learn enough
Python to develop simple plug-ins and to
create and modify production control
scripts alongside the technical users.



Industrial Light & Magic Runs on Python, continued

Python Unifies the Toolset

Encouraged by its successes in batch
process control and in scripting applica-
tions and software components, ILM started
to use Python in other applications as well.

Python is now used for tracking and
auditing functionality within the production
pipeline, where an Oracle database keeps
track of the hundreds of thousands of
images that are created and processed for
each film. DCOracle2, one of the Oracle
integration libraries available for Python,
has performed well in this task and is now
in use on Linux, IRIX, Tru64, and Solaris.

Python is also used to develop the CG
artist’s interface to ILM5 asset management
system. Designed to be modular, this tool
has been enhanced by a large group of
developers and non-developers alike to
extend well beyond its original mandate.
The application is now used not only to
manage CG assets and elements, but also in
daily shot review, as a network-based white-
board, as an instant messenger, and even
allows an occasional game of chess.

As Python was applied in more ways, it
slowly crowded out a plethora of competing
technologies for shell scripting and batch
control, embedded scripting, component
software development, database application
development, and so forth. Python’s versa-
tility ultimately simplified the developers’
toolset and reduced the number of tech-
nologies that needed to be deployed to
ILM thousands of production computers.
This new, simpler toolset translated directly
into an easier to manage and more reliable
development and production process.

Hardware Costs Reduced

Although chosen initially for its ease of use

and integration capabilities, Python’s porta-

bility to many other operating systems

eventually became one of its key strengths.
4

Once Python was in use, it made the
production control system portable. This
gave ILM additional freedom in making
hardware technology choices, including a
large-scale introduction of commodity PC
hardware and Linux, a move that has saved
the company substantial amounts of money
in recent years.

Source Code Access Important

After having used Python intensively for six
years, ILM has yet to run into significant
bugs or portability issues with the language.
As a result, since Python 1.5 ILM has been
able to rely on stock distributions in
unmodified form.

However, availability of source code for the
language acts as an important insurance
policy should problems arise in the future,
or should custom extensions or improve-
ments become necessary. Without this,
ILM could never have bought into
Python so heavily for its mission-critical
production process.

One case where access to source has already
been beneficial was in ILM5 continued use
of Python 1.4, which is generally considered
obsolete. Because the production facility is
under continuous use, upgrading systems to
new Python versions would result in signif-
icant disruption of the production process.

Instead, ILM installs new systems with
newer versions of Python but maintains
older systems only so they can run the same
scripts as the newer systems. Supporting
this mix has required access to the Python
sources in order to back-port some changes
found in newer Python versions, and to
reimplement portions of newer support
libraries under older versions of Python.
ILM is currently running a mix of Python
14,15, and 2.1.



Python Tested by Time

The visual effects industry is intensely
competitive. To stay on top of the heap,
ILM continuously reviews its production
methods and evaluates new technologies
as they become available.

Since its adoption in 1996, the use of
Python has also been reviewed numerous
times. Each time, ILM failed to find a more
compelling solution. Python’s unique mix
of simplicity and power continues to be the
best available choice for controlling ILM5s
complex and changing computing environment.



XIST: An XML Transformation
Engine Written in Python

Dr. Walter D6rwald and Dr. Alois Kastner-Maresch

About the Authors

Before receiving his Ph.D. in
2000, Dr. Walter Dorwald
researched forest growth
simulations and artificial life

at BITOK (the Bayreuth Institute
of Forest Ecosystem Research),
and developed a large C++
framework for simulation and
visualization. In 2000, he co-
founded LivingLogic AG, and
has been responsible for the
company's fundamental tools
and technologies ever since.

After getting his Ph.D. in
Mathematics in 1990, Dr. Alois
Kastner-Maresch lead the
Forest Ecosystem Simulation
research team at BITOK.

In 2000, he co-founded
LivingLogic AG, where

he is CEO.
www.livinglogic.de/Python/xist/

Summary

XIST is a XML transformation engine written
completely in Python at LivingLogic AG, a software
development company specializing in web technology.
XIST was designed to facilitate the task of creating and
maintaining large web sites.

Background

Soon after we began creating web pages in 1994, it
became clear that typing HTML files by hand is tedious
and cumbersome, and we began to search for tools to
simplify the repetitive task of HTML generation.

Early on, we discovered and started to use an HTML
preprocessor named hsc. This tool supported gener-
ation of pages from templates by defining new markup
tags and controlling how these tags would be trans-
formed into HTML, somewhat like XML/XSL does now.

Unfortunately hsc had certain limitations: It didn't
support local variables, and there were no control
structures except conditionals. Even arithmetic was
not possible. Our first web sites developed with this
system consisted of a mix of hsc macros and Perl
scripts that generated hsc source files.

In 1998, hsc's author halted further development,
and we became quite motivated to find an alternative.
At first we decided to continue development of hsc
ourselves, and planned to make it compatible with
XML, which was beginning to become popular at the
time. But extending hsc, which is written in C, proved
quite difficult. For example, adding Unicode support
required rewriting the entire I/O system. It became
clear that we needed to find another toolset for our
web development.

XIST is Born

Around this time we discovered Python and decided
that it might be a good way to completely rewrite hsc
from scratch. Python includes XML parsing capabilities
that we felt could be used as the basis for our work:



Instead of writing macros in hsc, we could
write XML that could be processed through
a simple mapping from XML element types
to Python classes.

In this approach, XIST generates an
extended Document Object Model (DOM)
on parsing each XML file. Classes defined
for each element in the file are instantiated
as the DOM is generated, and methods on
the classes are used to perform the necessary
XML transformations during page gener-
ation. This allows us to realize our web
templates with the full power of an
object-oriented scripting language.
During implementation, we found that all
of the key features of hsc could be supported
quite easily in Python:
* Automatically calculate image sizes?
The Python Imaging Library does this
with ease.

¢ Parse XML files? There are several XML
parsers available in Python.

¢ Load and store XML to and from
databases? The Python DB-API is
standardized and modules exist for
MySQL, Postgres, Interbase, Oracle,
ODBC, Sybase, and others.

e Fetch XML from the web? Python’s
urlparse and urllib standard libraries were
made for that. Handle Unicode? Python
2.0 fully supports Unicode out of the box.

Implementing the first prototype version
took a few weeks of spare time pro-
gramming and turned out to be very
successful. Python provided a much shorter
path from concept to implementation than
any of the other programming languages
we have used. And so XIST was born.

XIST5 development continued in Python
and today XIST is the basis of a successtul
company which employs 15 people. XIST

is now used in all of our web projects at
LivinglLogic AG.

Content Management with Python and JSP

On top of XIST, LivinglLogic has developed
a content management system called
XIST4C (4C means Content, Community,
Collaboration and Commerce). This system
combines the advantages of XIST's
abstracted page layouts with pre-compi-
lation of page templates to Java Server
Pages that are ultimately used to deliver
the content to the web.

By using XIST tag libraries instead of JSP
tag libraries we are able to build optimized
Java Server Pages that run considerably
faster than their JSP tag library counter-
parts, without any changes to the JSP files.
This performance gain is a result of the fact
that the XIST preprocessor takes care of
many compute-intensive operations, that
might require dynamic type introspection,
string processing etc. and would be
executed by the Java tag library code
during page load.

Fast development combined with low
hardware requirements make XIST4C
especially suitable for small and medium-
sized enterprises. This has allowed us to
achieve a unique competitive advantage,
and to realize projects at a much lower cost.

Prototyping Java Systems with Python

In 2000, LivingLogic was engaged to
develop a product for modeling business
process work flow and to automate business
processes. Inspired by our earlier successes
with XIST, we decided to develop a Python
prototype. This decision was made even
though our contract required us to produce
a Java-based prototype for delivery to a large
group of developers that would turn

it into a marketable product.



XIST: An XML Transformation Engine Written in Python, continued

The approach of using Python early in
prototyping made it possible for us to study
concepts using working code almost from
the start of this project. Although we had
to rewrite our Python prototype in Java, the
overall time spent on prototyping was lower
than we have seen in other projects that
used only Java.

Conclusion

Python is easy to learn and use, produces
maintainable code, and packs enough
power to make it a suitable choice for many
application domains and project sizes.

Some of the features that we like best
about Python include:

* Python’s extensive standard library and a
considerable range of available third party
packages support development in many
application domains.

* An unsurprising syntax and the
widespread and consistent use of a
few basic concepts, like namespaces,
help to make Python code readable
and maintainable.

* Extensive and easy to use introspection
facilities make Python easy to learn inter-
actively by discovering its capabilities,
including documentation, from the
command prompt.

* Python is readily extensible in C or C++,
so it is easy to incorporate non-Python
modules into an application.

Python has played an important role in
the success of LivingLogic AG, and will
continue to be the basis for most of our
software development efforts.



Python is Rackspace’s CORE Technology

About the Author

Nick Borko is the Director

of Internal Application
Development and the project
manager for Rackspace’s
enterprise database application,
CORE. Rackspace Managed
Hosting is the leader in deliv-
ering managed hosting services
to small and medium enter-
prises. All customer platforms
include state-of-the-art data
centers, customized servers,
burstable connectivity, 99.999%
uptime SLA, a dedicated
account manager, instant
emergency response and
access to live expert
technicians 24x7 for support

of all hardware and core
software. Founded in 1998
and headquartered in San
Antonio, TX, Rackspace
manages servers for
customers in more than

eighty countries.

www.rackspace.com

Nick Borko

Introduction

To be the industry leader in managed hosting, you
have to be fast and flexible. By using Python to
implement our enterprise data systems, Rackspace
can quickly and effectively change its internal systems
to keep up with shifts in the industry and in our own
business processes. We do this through a central
customer information system called “CORE,” which
is used both for Customer Relationship Management
(CRM) and Enterprise Resource Planning (ERP).
Python and CORE are key factors that enable
Rackspace to provide our Fanatical Support(tm)
and faster customer service.

Background

Rackspaces central customer database started as a
simple ERP system to provision and track managed
servers. It began humbly, as a small collection of PHP
pages that did the job nicely for the few hundred
servers that was the beginning of Rackspace’s
customer base.

As Rackspace grew, that small PHP system became
the center of business at Rackspace. Every time an
opportunity to automate a process presented itself,
it was rolled into that system.

After a couple of years, the result was a big, un-
maintainable mess of thousands of PHP pages and
modules that had been written and maintained
primarily by one person. The limits of PHP (then
version 3) had been stretched thin, the system was
too much for one person to maintain, and it was
difficult to bring in new people to help with it.

Our first attempt to update the system came when PHP
version 4 was released. This release promised better
object-oriented capabilities, and the time was right for
Rackspace to dedicate more people to the project.

The system was totally redesigned from the ground
up, including new database schemas and application
design strategies. At this time we re-dubbed the
project “CORE,” an acronym for Core Objects Reused

9



Python is Rackspace’s CORE Technology, continued

Everywhere, in order to reflect the overall
design goal for CORE: modularity and
reusability across all systems in the company.
With that goal in mind, our team went to
work using the object-oriented features of PHP

While we were able to re-fit the application
and add increased functionality, the project
ultimately failed due in large part to the
problems encountered while using the
object framework provided by PHP.

Memory leaks, inconsistent interfaces, incon-
sistent internal data models, randomly freed
objects, multiple object copies despite
explicit use of references, internal PHP errors,
and untraceable code failures made the
task all but impossible to accomplish in PHP

Even after we achieved a relatively stable
code base, we were nowhere near our
goal of Core Objects Reused Everywhere
because we had to depart from pure object-
oriented methods just to work around the
problems inherent in PHP It became clear
that PHP was unsuitable for our large scale,
mission critical projects. A new solution
had to be found.

Python in CORE

We had always considered Python to be an
excellent candidate for implementing our
enterprise system, but it was initially passed
over in favor of building upon the existing
(vast) code base we already had in PHP. At
that time, we felt that PHP could be used
successfully in CORE by introducing a
better structured system design.

Unfortunately, that wasn't enough to
overcome our other problems with PHP,
so we re-evaluated our situation. The first
alpha version of Python 2.2 had recently
been released, and we decided to begin
work on a new CORE framework using
the new features that were available in
that version.

10

The Power of Introspection

One of the first tasks in writing the new
framework was to build its database interface.

Python’s introspection model had been
significantly enhanced with the release of
Python 2.2. We decided to use it to build a
generic database interface class, based on a
DBI 2.0 compliant database connector. In
this approach, rather than writing queries
or table-specific wrappers by hand, a meta-
class abstracts all database queries into a
single clean API.

We create descendents of this meta-class
to make an API for each table. Each table’s
class contains a few class constants that
describe the columns in the database. This
way we can add new tables to the overall
APT quickly and simply without having to
worry about implementation details for
any specific table.

The API also uses meta-data to automati-
cally validate and convert values passed to
the database. This is done by a “normalizer”
function that converts the Python data types
being passed through the API into valid
SQL values. The function also verifies types
and formats that are not necessarily checked
by the database or by Python, such as
phone numbers and ZIP codes.

Reusing Objects Everywhere

Once the database API was complete, we
created a second layer of classes on top of
it. This higher level APT implements the
business logic for specific applications, such
as contact management or trouble ticket
handling. It also prevents users from
performing operations that are inconsistent
with Rackspace’s business practices, or
assigning data that would result in other
types of high-level corruption of the data
in the database.

With the creation of this second layer, we



achieved our original goal of Core Objects
Reused Everywhere. Programmers
throughout the company began to use this
API to implement interfaces to application
functionality. This required little interaction
with our API development team, and it could
be done without fear of misusing the APL

While we designed the API primarily for
CORE, the central enterprise application, it

is reused in a number of other systems at
Rackspace. For example, one group built a
SOAP server on top of the API, in order to
access it from their PHP applications. Other
applications use the API directly, and it has been
extremely gratifying to see our work reused and
integrated so easily with other systems.

Integrating Python with Apache

With the API in place, our next task in
developing CORE was to find a useful
templating module to integrate our Python
code with HTML pages running on the
Apache web server.

After looking at a number of available
Python-based templating modules, we opted
to create a simple parser of our own. Our
approach was to convert server-side template
pages into Python servlets whose output is
sent by the HTTP server to the users browser.

Although this was a fairly simple exercise,
we did run into some problems stemming
from our design of the CORE database
meta-class. We found that altering classes
and modules at runtime, as is done by the
meta-class, violates guidelines imposed by
Python’s optional restricted execution
environment. Since we felt that restricted
execution was a necessary component in
supporting a persistent web module, we opted
to deploy CORE using CGIs rather than
mod_python or similar persistent solutions.

Since fast hardware and multiple servers are
readily available, and since our template

parser pre-compiles and caches the Python
servlet code that it produces, the CGI
solution is sufficient for our needs. It also
allows us to resolve issues such as database
connection pooling and restricting the
execution environment outside of Python.

Unit Testing

Thanks to the unit testing module that
comes with Python, our projects are
reaching production with far fewer bugs
than we had ever thought possible when
we were using PHP. During maintenance
with PHP, there was always a question of
whether a change in one place would break
something else in another part of

the application.

We now write unit tests for each and
every APl as the AP is being designed.
This means that we can verify the changes
in one module as well as its effects on all
the others simply by running the unit tests
for the entire APL

Since introducing Python and unit testing,
the nature of the bugs that we see in
deployed applications has shifted to include
primarily those in the user interface, such as
layout problems or faulty event handling.

These days, very few bugs come from the
APl itself, and even those are generally the
result of poor revision management or DBA
coordination during application
deployment. Python can't solve _all_
problems during development, but it
certainly has reduced the number of critical
system defects for us.

Documentation

Lack of documentation has been a major
problem with our previous development
efforts. We tried several tools and policies
to document our PHP efforts, but in the end
these failed. Code changed too quickly, and
the code-level documentation tools available



Python is Rackspace’s CORE Technology, continued

for PHP at the time were too finicky to
justify the amount of effort required to get
the documentation to parse correctly.
Additionally; despite careful planning and
coding strategies, the mixture of PHP and
HTML made deciphering and under-
standing the code more difficult.

Fortunately, Python was designed with
documentation in mind, with the use of
“doc strings” for modules, classes and
methods. Since documentation is actually

a part of the language itself, and pydoc is a
standard module in the Python distribution,
it was easy to extract API documentation to
HTML and other formats.

Over time, we have found that the syntactic
structure of Python makes for extremely
readable code, and that in itself helps in
the overall task of documenting and
maintaining code.

Conclusion

Python has dramatically improved devel-
opment processes for the CORE project,
and it has led to the faster development
times and more rapid releases that allow
us to keep up with Rackspace’s ever-
changing business processes.

Python enabled us to create a sophisticated
dynamic data model that is flexible and easy
to use for abstracting database operations.
With it, we realized our goal of Core
Objects Reused Everywhere.

Python’s integrated unit testing and documen-
tation tools greatly enhance our ability to
deploy and maintain a more stable, error-
free product.

The result is a successful enterprise appli-
cation that is instrumental in the delivery
of Rackspace Managed Hosting’s promise
of Fanatical Support, Unmatched Speed,
and Unlimited Flexibility in the managed
hosting industry.



Putting Web Services to Work with Python

Dr. Tim Couper, Marc-Andre Lemburg,

About the Authors

Dr. Tim Couper (tim@siena-
tech.com) is the chairman of
Siena Technology. He holds a
mathematics D.Phil. and has
twenty years’ experience
running software companies.
He now spends most of his
time consulting as architect
and technical lead for large
development projects, and has
been extensively involved in
planning and coordinating the
2002 and 2003 Python UK
conferences.

Marc-Andre Lemburg
(mal@siena-tech.com) is the
Chief Technical Officer (CTO)
of Siena Technology. He holds
a degree in mathematics from
the University of Duesseldorf.
Marc-Andre has been working
with Python since 1993, is a
Python Core Developer, board
member of the Python
Software Foundation (PSF),
author of the well-known
eGenix.com mx extensions
(mxODBC and mxDateTime),
and was one of the executive
organizers of EuroPython 2002.

www.siena-tech.com

and Siena Technology Ltd.

Introduction

Consultants naturally try to provide their customers
with the best solutions for a problem. Sometimes this
means exploring new areas together with the customer
or directing the project into a solution space that better
fits the problem than the usual “buzzword-compliant”
approaches. We've seen these fail too often, misleading
the project into solving problems relating to the
selected technology, rather than meeting the original
project plan.

Python Goes Fortune 500

In a recent project for one of our customers, we faced
a problem that is quite common in Fortune 500
companies: Multiple clients running on unmanageable
client machines are tied closely to complicated
database relationships, making management and
further development very difficult.

Thanks to the marketing efforts of several large server
vendors, our solution space was quickly identified.
What the company needed was Web Services, or put
simply, a way for a client application to talk to the
server side in a reasonably standardized manner. Our
customer was already using two of the dominant
technologies in this area: Microsoft .NET and BEAs
WebLogic® J2EE server.

When we came into the project, a team was already
trying to solve some of the company’s problems using
the J2EE platform. However, we found that they were
spending more time trying to work around design
problems in the technology than actually writing code
for the services. Since the company had already been
introduced to Python in a smaller XML project, we
were able to convince the project lead to try a new
technique based on Python.

The idea was to leverage the efficiency of Python
programming together with its good database connec-
tivity to compete against the J2EE team. What we



Putting Web Services to Work with Python, continued

needed was a stable and robust server
implementation and a flexible way to write
and publish Web Services. Fortunately, the
server had already been written in the form
of the easily extensible eGenix.com
Application Server, so our task was simply
one of adapting this server to make writing
services as easy as possible.

Keep IT Simple, But No Simpler

Following the Python paradigm of “obvious
is better than obscure, explicit is better than
implicit,” we chose the most straight-
forward possible way of dealing with Web
Services: Each service was mapped to a
Python class, which provided the public
methods to call from the client application.
There were two reasons that we felt that
service implementations should look no
different than any standard class implemen-
tation in Python: (1) a programmer should
not need to learn a new way of coding just
to be able to write services, and (2) existing
integrated development environments
(IDEs) should be used to make coding
services even easier.

Since Python is an object-oriented
programming (OOP) language in all
respects, the implementation we chose
placed basic shared functionality into a
Service base class that hides networked
server interaction from the programmer.
As a result, the service developer only
needs to think about the business logic
in the service methods and can rely on the
server to automatically provide database
connection pooling, protocol handling,
transaction control, and all the complicated
interactions that are needed to make a
server side implementation robust.

Client-side Bliss

Another design goal for the system was to
simplify client-side programming as much
as possible, in order to make it easy to adopt

14

the new technique. Just as service writers
shouldn’t need to think about low-level
database connectivity, we felt that client
application programmers shouldn’t be
bothered with the details of setting up
connections and talking to the server side.
We wanted to design a very simple appli-
cation programmer’ interface (API) which
would hide all the complications inherent
to networked client/server interaction.

Client side agents for Java® and Windows’
COM interface made this possible by enabling
access to the Web Services from all major
client application environments such as
Visual Basic (VB), Visual Basic for
Applications (VBA as used in Word, Excel,
and Access), Delphi, C++, Java, C# and
others. These not only hide the protocol
level from the application programmer,
but also provide the key to enabling
security and fail-over solutions.

Web Services standards are still in the
planning stage, and it is not at all clear
which of the proposals will be accepted

by standards organizations. By creating a
true middle tier, we were able to hide the
particular methods and protocols we chose
inside of the Siena client and server, and
were free to use existing security standards
and authentication modes to build a secure
communication channel.

Above and Beyond Web Services

With these basic building blocks, we were
moving towards realizing the Siena Web
Services Architecture, which included a
Python-based server side, a COM client
side agent (also written in Python), and
a Java client side agent.

One distinct advantage of writing both the
server side and COM client side of our Web
Services architecture in Python was that we
could automatically replicate services from
the server to the client side. This was



possible whenever a service did not
depend on database connectivity or other
elements specific to the server-side
environment. Python’s data packaging
facilities and portable byte code format
made this operation quite easy to
implement. The result was a significant
boost in application performance, reduced
network bandwidth requirements, reduced
network latency, and increased server
performance, all without sacrificing the
efficiency of centralized server-side
management that makes Web Services

so attractive to IT management.

The Python Mantra

Still missing in our plan were the skills
needed to code Python servers and clients.
Most of the programmers in our team knew
only a mix of Java, Visual Basic, and C++.
While the J2EE group was working on
solving J2EE problems, we invested a day
in teaching Python to the rest of the team.
Python wasted no time making its way into

the hearts and minds of these programmers.

It was a thrill to hear fellow programmers
chiming in with our own Python mantra:
“This is what I've always been looking for.”

Results

Happy programmers are good programmers,
and good programmers work efficiently.
Thats what project management learned

at this point in our effort. The group’s Web
Services programmers quickly caught on to
the new Python-based system and devel-
opment progressed at amazing speed.
Services could now be implemented in a
few minutes rather than the days needed
using the typical J2EE approach. Now most
services were completed and deployed in

less than a day, and the ease and speed with

which they can be modified and tested has
made an incremental approach to service

development possible. And IT management
was excited to see the overall high
performance of our solution.

The Siena Web Services Architecture has
become a crucial mission-critical component
for this customer, as it moves from a two-
tier to three-tier architecture and adds
fail-over and security to their Web Services.

The Siena Web Services Architecture will
soon become part of our product line. If
you are interested in the solution, please
visit our website at www.siena-tech.com/
or contact us directly.

PS: After several months of effort, the
J2EE team never did get their Web
Services working.



Python Streamlines
Space Shuttle Mission Design

About the Author

Dan Shafer is a freelance
author and sometime Python
coder who hangs out on
California's central coast. He
is a member of the PythonCard
Open Source development
team creating a GUI-building

framework for Python applica-

tions. He makes his living as
a writer and a product devel-
opment consultant. A founder
and former editorial director
of Builder.com, Shafer has
been part of the web devel-
opment community almost
from its inception.

This article was previously
publised on Builder.com

Daniel G. Shafer

Introduction

Software engineers have long told their bosses and
clients that they can have software “fast, cheap, or
right,” as long as they pick any two of those factors.
Getting all three? Forget about it!

But United Space Alliance (USA), NASA’s main shuttle
support contractor, had a mandate to provide software
that meets all three criteria. Their experience with
Python told them NASA’s demands were within reach.
Less than a year later, USA is nearing deployment of

a Workflow Automation System (WAS) that meets or
exceeds all of NASAS specifications.

“Python allows us to tackle the complexity of programs
like the WAS without getting bogged down in the
language,” says Robin Friedrich, USA’s Senior Project
Engineer. Friedrich conceived of the WAS project in
response to a significant gap in the way shuttle
mission planning was handling data management.
“Historically,” Friedrich says, “this data has been
communicated using paper and, more recently, data
file exchange. But both of these approaches are
error-prone. Catching and fixing errors as well as
responding to frequent change requests can bog
such a system down.” Complicating the issue was
the challenge of finding money to improve the flight
design process in an era of declining budgets for
space activities.

“Just in time” Provides a Solution—and More Problems

USA decided they needed a way to “minimize data
changes and the resulting rework.” The shortest route
to that goal would be to shift the design work to the
end of the process so that flight characteristics would
have a good chance of already being finalized. In other
words, as Friedrich says, “We decided we needed to
do this data management work fust in time’.”

A just-in-time solution, however, generally puts more
stress on both people and systems to get things right



the first time because postponing these
activities to the end of the process means
a loss of scheduling elasticity.

“The obvious answer,” according to Friedrich,
“was to create a central database repository
to help guarantee consistency and to provide
historical tracking of data changes.” An
Oracle database was designed to store the
information, but a graphical front end to
manage the process of workflow automation
was clearly an essential component of an
effective solution. “We knew from experience—
we do a good bit of Java coding in our
group—that using C++ or Java would have
added to the problem, not the solution,”
Friedrich maintains.

Python a Mainstay Since 1994

Enter Python. ‘I literally stumbled across
Python as I was searching the pre-Web
Gopher FTP space for some help with a
C++ project we were doing,” says Friedrich.
Being an inveterate systems engineer,
Friedrich “just had to investigate it.” He
was stunned by what he discovered.

“Twenty minutes after my first encounter
with Python, I had downloaded it, compiled
it, and installed it on my SPARCstation. It
actually worked out of the box!”

As if that weren't enough, further investi-
gation revealed that Python has a number
of strengths, not the least of which is the
fact that “things just work the first time.
No other language exhibits that trait like
Python,” says Friedrich.

He attributes this characteristic to three
primary language features:

* Dynamic typing

* Pseudocode-like syntax

* The Python interpreter

The result? “We achieve immediate
functioning code so much faster in
Python than in any other language that

it’s staggering,” says Friedrich. “Java and
C++, for example, have much more baggage
you have to understand just to get a
functioning piece of software.

“Python also shines when it comes to code
maintenance,” according to Friedrich.
“Without a lot of documentation, it is hard
to grasp what is going on in Java and C++
programs, and even with a lot of documen-
tation, Perl is just hard to read and maintain.”
Before adopting Python, Friedrich’s team
was doing a good bit of Perl scripting and
C++ coding. “Python’s ease of maintenance
is a huge deal for any company that has any
significant amount of staff turnover at all,”
says Friedrich.

The team had already developed a moder-
ately large number of C++ libraries. Because
of Python easy interface to the outside
world, USA was able to retain these
libraries. “We wrote a grammar-based tool
that automatically interfaced all of our C++
libraries,” says Friedrich.

Another aspect of Python that Friedrich
found eminently significant is its shallow
learning curve. “We are always under the
gun on software projects, like everyone
else,” he says. “But for any programmer,
picking up Python is a one-week deal
because things just behave as you expect
them to, so there5 less chasing your tail and
far more productivity.” He contrasts that
with C++ and Java, which he says takes a
good programmer weeks to grasp and
months to become proficient.

Friedrich says that even the non-
programming engineers at USA learned to
do Python coding quickly. “We wanted to

17



Python Streamlines Space Shuttle Mission Design, continued

draft the coding energy of the engineering
staff, but we didn’t want them to have to
learn C++. Python made the perfect 4GL
programming layer for the existing C++
classes.”

One Coder and 17,000 Lines of Code Later

The WAS project, which has required some-
what less than a man-year of effort, has been
coded by a single senior software engineer,
Charlie Fly, who has cranked out some 17,000
source lines of code (SLOC). Python plays
the central role, managing data interactions
and the task network.

In the system, user tasks communicate with
a Python data server, which in turn connects
to an Oracle server via DCOracle. Using
Oracle’s built-in trigger mechanism to send
a message to WAS as data records are
updated, the WAS calculates which tasks
are now data-ready and notifies the
appropriate user.

At the core of the design is the Task object,
which stores all information relevant to a
single task in the workflow network. The
end user can view the network in a PERT-
style chart layout, where color coding
reveals at a glance which tasks are finished,
which are in process, and which have not
yet been started.

Two other graphical interface windows
allow the user to manage the dependencies
among data items in the network and to
view and edit individual task details.

All of the code for the Uls was also done
in Python, using the popular Tkinter library
along with an open source package of
supporting modules. Tkinter is included
in all standard Python installations.

“USA is pleasantly surprised by how much
quality software we can deliver,” Friedrich
says. “And each time we demonstrate
success with Python, we add a few more
believers to my growing list!”



Wing IDE Takes Flight with Python
Stephan R.A. Deibel and John P. Ehresman

About the Authors

Stephan R.A. Deibel has been
designing and developing
software for almost twenty
years. He has worked exten-
sively in medical informatics
and as a software consultant.
Before finding Python, his
projects included one of the
first Macintosh-based multi-
media authoring systems and
an early CORBA implemen-
tation. Stephan is now CEO
and co-founder of Archaeopteryx
Software, Inc., makers of
Wing IDE.

John P. Ehresman has been
programming for more than
ten years in medical informatics
and as a software consultant.
He has been using Python
since version 1.2 and is now
co-founder of Archaeopteryx
Software, Inc.

www.wingide.com

Introduction

Wing IDE™ is a commercial integrated development
environment for the Python programming language.
Wing provides developers with a full-featured source
editor, debugger, code browser, and many other tools
specifically designed for use with Python. Wing works
with all forms of Python, whether running as a stand-
alone app, under a web server, or in a custom
embedded scripting environment. Several GUI layers
(wxPython, PyQt, PyGTK, and Tkinter) are supported,
as are Zope and mod_python for web development,
and pygame for game development.

Wing was inspired in 1999 by several experiences
we, its developers, had using Python alongside other
technologies. At that time, we were working as
consultants charged with evaluating a number of
alternatives for tiered web development. Some of
these were based on Java and some on Visual Basic,
MTS, and ASP. Concurrently, we happened to be using
Python to prototype some of the functional require-
ments for the web-deployed business applications
we were developing.

It wasn't long before we found ourselves comparing
our Python prototypes favorably to the actual systems
we were developing. Python was a much more
productive way to work, and it seemed to result

in at least as good an end product.

Unfortunately, our clients never seriously considered
Python simply because it wasn't a mainstream (namely
Java or Microsoft) technology. But it was clear to us
that Python could have been a significant cost saver
and competitive advantage for them, and we saw a
business opportunity in helping other organizations
benefit by using Python.

Development Approach

Work on Wing IDE started almost right away, in mid-
1999, initially on a part-time basis. We realized that



Wing IDE Takes Flight with Python, continued

writing an entire IDE wasn't going to be
easy and wanted to be sure that Python
was really as good as it appeared to us at
the time. The logical way to approach this
was to develop the IDE itself in Python.
This would give us proof of concept and
let us become early users as we started to
develop and debug Wing IDE with itself.

To speed development and keep costs
down, we chose to base Wing on as many
open source modules as we could find.
The GUI was written with GTK, which
is accessed from Python via PyGTK. The
source editor is based on Scintilla, an
open source code editor component.
And printing is implemented via

py2pdf from ReportLab.

Initial development was on Linux but
we planned to support at least Windows
and eventually other Unix-like operating
systems. For this reason, we avoided
platform-specific implementations and
chose cross-platform technologies.

Additional development tools used in
the project included gec, Gnu make,
latex, pdflatex, latex2html, emacs/xemacs
(before Wing was functional), Visual
C++ 6, and cygwin.

Results

Our work on Wing IDE has been quite a
success. We were able to develop faster
than we originally expected, and to deliver
Wing IDE on Linux, Windows 98 through
XP, Mac OS X with XDarwin, Solaris, and
FreeBSD without major platform-specific
development work. Today, our product is
receiving good reviews and is selling well.
All of this has been possible without any
outside funding and with a development
team of just two people.

The biggest benefits of using Python have
been in overall productivity, cross-platform
deployment, speed of the resulting appli-
20

cation, scalability, rock-solid stability, and
its strong support for mixed-language
development.

Productivity

Over the course of this project, we have
been able to write on average over 175
lines of debugged, documented, tested
code per developer per day. Over a period
of 660 FTE days, we produced a total of
approximately 121K lines, of which 77K
were written in Python. Even without
considering that a line of Python is typically
equivalent to ten or more lines of C, we
were extremely pleased with this result.

The entire product, including third-party
open source modules, actually contains
on the order of 1.2 million lines of code,
of which 274K lines are Python.

So why was using Python so productive,
even when only 63% of the code we wrote
was in Python? There are several answers
to this question:

1) Simple syntax—Although use of
indentation to indicate program structure
sometimes turns off first-time Python users,
the reduced typing burden that comes with
avoiding {}’s and similar syntactic sugar
does matter over the course of writing

and rewriting hundreds of thousands

of lines of code.

2) Dynamic high-level data typing—Lack
of strong data typing, another commonly
cited “weakness” in Python, is in practice
a significant advantage for most kinds of
software development. The bottom line is
that you don't need strong data typing in
the context of a language like Python.
Common coding errors are caught anyway
by the type system: You still can't add a
number to a string, reference past the end
of an array, or call a non-existent class
method. Dynamic high-level data typing
cuts out great volumes of support code



and makes it possible to write flexible and
introspective code (more on this below).

3) Powerful, easy-to-use data structures—
Python’s built-in list and dictionary data
structures can be used in combination to
build just about any fast runtime data
structure in a snap. This further reduces the
amount of support code you need to write.

4) Extensive standard library—Python comes
with a vast standard library supporting
everything from string and regular expression
processing to XML parsing and generation,
Web Services tools, and internet protocol
support. Many common programming
tasks have already been built into the
standard library, making it possible to do
more with less code. Third-party modules
are also available for database access, CORBA,
COM, statistics, math, image processing,
and much more.

5) Introspection—Python’ flexible data
typing system extends also to code docu-
mentation, classes, methods, and even the
way in which methods are called. Python
makes introspection extremely accessible
to the programmer and, remarkably,
introspective code remains readable and
maintainable. This can be very useful in
redirecting /O to classes of your own
design, writing a tracer that determines
code coverage, packing up data to store
on disk or send over the network, devel-
oping glue code, writing table-driven
algorithms, extracting documentation
from code at runtime, applying design-
by-contract development methods, and
in building various types of meta-classes.
For almost every programming task,
Python makes it not only possible but
quite easy to build meta-code where one
might otherwise end up building gobs
of manually crafted code.

6) Faster development and deeper
prototyping—Python increases speed of
development to the point where proto-
typing can be integrated into and
interleaved with the primary development
process. When it takes only half a day

to try out a new approach to a problem,
rather than the week it might take in C

or C++, programmers are more often
empowered to rework existing imperfect
code, and to try out new ideas. This results
in the more rapid incorporation of experience
into an application’s design, and leads to
higher code quality.

Cross-platform Deployment

Wing IDE runs on a variety of Posix®
operating systems and Windows. Through-
out our development process, we've been
very happy with the way that Python
performed across platforms. The same
Python source or compiled Python byte
code files can be shipped to clients
regardless of target platform, making
support quite easy.

Speed, Scalability, and Stability

When we started to write in Python, our
previous experience in compiled languages
led s to believe that we would be spending
a fair amount of time either optimizing
code or converting it into C or C++ once
we had prototyped it. As it turned out,
most of the time Python produced a
snappy end product that didn't require
any extra work.

This happened partially because most
Python code is really just a thin interpreted
layer over functionality that is written in C
or C++. In our case, this included not just
Pythons fast built-in data structures and
standard libraries, but also the bulk of the
GTK GUI development layer and the
Scintilla source editor.

21



Wing IDE Takes Flight with Python, continued

In the course of development and in
responding to thousands of support tickets
over a three year period, we have never run
into any significant problems with Python
itself, either in scalability or stability. Wing
IDE can handle software projects with
thousands of Python files, and in many
cases can run for weeks without problems.
To our knowledge, we have yet to see Wing
IDE crash because of a flaw in the Python
interpreter or its standard libraries.

Mixed-language Development

Python is almost always fast enough but
we did run into a few cases where the
interpreter introduced too much over-
head. The Wing IDE debugger and

the source code analysis engine both
contain modules that engage in extremely
CPU-intensive processing. These modules
needed to be written in C in order to
squeeze out as much speed as possible.
Fortunately, Python is designed to make it
quite easy to call back and forth between
Python and C or C++.

In most cases, we wrote and debugged
code first in Python, and then converted
by hand into C. This approach worked
well for us. Working initially in Python
was much more efficient and the
conversion process relatively painless.

Analysis of our records shows that 360
days were spent on 77K lines of Python
code and 300 days (almost as much) on
44K of C, C++, or other code. From our
experience with code conversions, we
believe it is roughly correct for most types
of performance-critical code to equate one
line of Python with ten lines of C or C++
code. This means that about 5-10% of our
application functionality is in C or C++
and the rest is in Python. Even considering
that the C/C++ code is somewhat more
complex than most of the Python code,

22

these results confirm without any doubt
that working in Python is far more
productive than working in C or C++.

In hindsight, we believe that we could
have converted smaller units of code into
C, by writing more general data-driven
processing engines and by more carefully
selecting code to convert instead of
converting whole modules at a time. Our
primary goal for Python in the future is to
be able to use it more often, even in
performance-critical sections of code.
This effort should benefit from projects
like pyrex, which allows the use of Python-
like code in the development of compiled
extension modules, and psyco, which is a
just-in-time compiler for Python.

Quirks

There are just two quirks that affected our
development with Python. The relative
impact they had on our project was tiny
compared to Python’s benefits, but for
balance we feel they are worth mentioning:
1) Like Java and other languages, Python
occasionally deprecates old features, or
fixes minor bugs in a way that can poten-
tially break existing code. This is done over
the course of a number of releases, so that
programmers will first see deprecation
warnings, and only later be impacted by
the change. We ran into this only once
when Python 2.0 began to disallow
multiple arguments to the sequence append
method. This problem required changing
exactly three easily found calls in our code
base of over 77K lines of Python.

2) Different versions of Python can produce
incompatible compiled byte code and
requires that C/C++ extension modules
are compiled against a specific version of
Python. For example, while Python 2.2.2



works happily with Python 2.2.1 or 2.2.0
byte code and extension modules, it will
print warnings and may run into problems
running against those compiled against
Python 2.1.x or earlier. There are solid
technical reasons behind this design
choice, but it does require some additional
work when packaging applications for
distribution to users running different
versions of Python. In the Wing IDE
debugger, we solve the problem simply
by storing separate directories for each
interpreter version and importing modules
accordingly at runtime. For the IDE itself,
we solve it by shipping with a specific
Python interpreter included,; a task that’s
easily accomplished with support found
in the Python standard library’s

distutils package.

No other language we have used has been
this devoid of quirks, even those we have
used much less intensively and across fewer
language revisions.

Conclusion

Without Python, we could not have sustained
the Wing IDE development effort long
enough to produce what is now a successful
software product. Python has been more
productive, robust, and portable than any
other technology we have tried. Through
our experiences providing technical support
for the IDE, we know that we are not alone
in these assessments. Feedback from our
customers often includes strong endorse-
ments for the productivity of Python, Wing
IDE, and related technologies such as Zope.

23



Python Enterprise-Wide at the
University of St Andrews in Scotland

About the Author

Hamish Lawson is a software
developer in the IT Services
department at the University
of St Andrews, Scotland. He
specializes in web-based
information systems.

www.st-andrews.ac.uk

24

Hamish Lawson

Introduction

The IT Services department at the University
of St Andrews, Scotland, develops and maintains
software systems used in a variety of capacities
throughout the university.

I had several years of experience working with Perl
when I took my first serious look at Python back in
1999. Our team’s projects were becoming bigger and
more complex, and it was obvious that we needed to
bring to them more structure and clarity. I had been
looking at Java for some time, but its potential benefits
seemed to come at the cost of a steep learning curve,
and an overall increase in development time. In contrast,
Python appeared to offer the prospect of having both
clarity and productivity at the same time. And if we
ever needed to make use of Java’s class libraries there
was always Jython, an implementation of Python for
the JVM. The increasing number of Python books
being published testified to the language’s growing
popularity, and the number of available libraries was
beginning to rival Perls. This convinced me to give
Python a try.

Python Finds a Home

Soon thereafter, I introduced Python to my fellow
developers in the IT Services department at the
University of St Andrews, Scotland. It is now the
mainstay of our software development efforts.

Python has been used successfully by IT Services for
a number of projects. These have included systems
administration scripts, where it is used alongside Perl
and shell scripts, and also sizeable enterprise systems
deployed across the university.

By using it on a number of projects, we have come to
understand that Python’s dynamic nature, support for
high-level data structures, and easy object-orientation
all lower the barrier to writing well-structured reusable
code in less time. The language’s clear and simple
syntax helps to reveal the sense (or otherwise!) of our
code. This makes it easier to understand and reason



about code during development and-more
critically—during later maintenance. The fact
that Python is so easy to learn has been quite
useful as well.

Job Vacancies Facility

One of our earliest Python projects was a
facility for university job vacancies. This
was implemented using Zope, an innovative
Python-based web application server that
provides a range of web components plus
powerful facilities for templating and
integration. I started the project with a
colleague who had more experience in web
design than programming. After some time,
we found that Python’s powerful simplicity
enabled my colleague to improve his
programming skills rapidly, to the point
where he was able to continue development
of the system by himself. Zope itself also
helped in this regard, by reducing the
amount of programming that needed to
be done in the first place.

Student Record System

One of our larger projects was a system

for managing student records. It employs a
model-view-controller architecture in order
to promote reuse. Presentation is handled
by Cheetah, an open-source templating
technology for Python. The interface
between Python and the underlying Oracle®
database is handled by the high-quality
DCOracle2 driver made freely available

by Zope Corporation.

Matching Students with Classes

Python was also used for a web-based
system that managed the process of
matching students with the classes they
wished to take in the coming year. The
system was used by most of our students
and a number of our staff for various stages
of the process—from selecting preferences

in the spring and summer, through to
final validation during matriculation at
the start of the new academic year. The
system implemented work-flow and
notification mechanisms.

Because of the number of concurrent users
that the system was expected to support,
particularly during matriculation, we felt
that a traditional CGI approach could lead
to performance problems. Instead, we
employed mod_scgi, an Apache module
that implements the client end of the SCGI
protocol for long-running web processes
(similar to FastCGI). The server end of
the SCGI protocol was implemented by
Quixote, a Python-based web framework.
Quixote also provided a URL mapping
mechanism that simplified the job of
publishing objects on the web. Cheetah
was again used for handling presentation,
and Oracle was used for storage.

We were assigned this project somewhat late
in the process, and it was clear that it would
come into active use while parts of it were
still being developed. To support this, we
planned to deliver the system in stages, but
we were aware from the outset that many of
the system requirements still had to be
discovered and understood. We knew this
would lead us to rewrite parts of the system
as we went along and worked to obviate
this with design decisions aimed at decou-
pling the system’s components. Python’s
dynamic nature and supreme flexibility
made it easier to write generic interfaces,
which later facilitated the rewriting and
refactoring tasks we had to undertake.

Conclusion

Since switching to Python, we are writing
better structured and more readable code
in less time ... and it’s fun! I can'’t think of
a better testament to a programming tool.

25



Python Powers Journyx Timesheet

Curt Finch and John Maddalozzo

About the Authors

Curt Finch, Journyx founder and
CEO, started the company in
1996 after a successful career
in the consulting industry
participating in and managing
engagements with Fortune 100

companies such as Tivoli®, IBM®,

and Prudential Securities.

John Maddalozzo, Journyx V.P.
of Engineering, joined Journyx
in 1999 after a twelve year
career in Unix kernel devel-
opment at IBM’s AIX
Engineering group.

www.journyx.com/

26

Introduction

Journyx Timesheet (tm) is a commercial application
that provides time, expense, and project tracking. In
1996, Curt Finch, Journyx CEO and founder, was
working in the staffing industry when he saw an
opportunity to use the Web to accurately collect and
store employee timesheet information.

The first version of Timesheet focused on collecting
accurate cost information, with an eye towards
applying that data in the formulation of new project
cost projections. Since then, Timesheet has expanded
considerably to facilitate tracking of time, mileage, and
expenses, not just for project management but also for
billing and payroll purposes. Optional modules are
available for paper-less expense reporting, advanced
user role management, automated billing and payroll,
and to facilitate system access for disconnected
traveling users.

Today, Timesheet is platform-independent, flexible
enough to be reconfigured by customers to fit unique
organizational needs, and scales to tens of thousands
of users for the large enterprise.

Python from the Start

Curt Finch chose Python initially on the recommen-
dation of a friend, Steve Madere, who had founded
Dejanews.com (now a part of Google®). Describing
the rationale for his choice, Curt said “T looked at Java
and C and came to the conclusion that one line of
Python is ten lines of Java or one hundred lines of C.
Developers write code at basically a constant rate so

I chose Python which was (and is) the highest level
language I've ever seen that is also flexible enough to
be generally useful.”

Architecture

From the beginning, Timesheet was designed and
implemented as a web application. It uses a three-
tiered web application architecture with separate layers
for web presentation, business logic, and data storage.
As time has progressed, the application’s functionality
has advanced considerably, and Curts decision to use



Python for an implementation language has
proven to be a good choice.

Python is currently used for all application
logic in the Timesheet application. This
includes all code between the initial Apache
dispatch, where mod_python is employed to
expedite interpreter instantiation, through the
application logic, and down to the point of
call out to the database transport layer.
Timesheet uses not only the Python standard
library but also several independently
developed open source Python subsystems,
such as PyXML and ActZero’s SOAP support.
PyXML is used to implement certain business
rules and to develop jxAPI, which is a SOAP-
based API, into the application logic. Work is
in progress to extend this API to define Web
Services Description Language templates for
the jxAPI functions. The application currently
builds and ships with Python 2.1.1.

Timesheet also incorporates several non-
Python technologies. The Unix and Linux®
distributions are packaged with the Apache
HTTP server and PostgreSQL database. The
Timesheet distribution for Windows® ships
with an optional Microsoft® Desktop Engine
(MSDE) database and integrates with
Microsoft IIS. Timesheet can be configured
to use a variety of third-party databases.

Results

The Timesheet project has succeeded spec-
tacularly, generating millions in revenue and
allowing Journyx to grow every year, even
under the current economic conditions.
Journyx, like many of our customers, uses
Timesheet internally as a mission critical
part of the company infrastructure. It is
used extensively for project tracking,
billing, and payroll. To date, approximately
11 person-years have gone into the Journyx
Timesheet product, resulting in over
150,000 lines of Python code.

In developing Journyx, the two greatest
benefits of Python were the speed with which
features could be written and deployed, and
its true write-once-run-anywhere cross-
platform capabilities. Journyx developers
have found that the simplicity and clarity of
Python combine with its object-oriented
properties to make it a very powerful and
productive language. Python’s rich standard
library, which includes modules for things like
string manipulation and HTML generation,
further supports programmers in meeting
aggressive development schedules.

Because of these properties of the language,
Python has enabled Journyx to add features
more quickly than our competitors. We've
been able to implement SOAP/XML and
WSDL support and extended other aspects
of the application’s functionality well ahead
of competitive products. Some of the key
enablers of this efficiency in maintenance
and improvement is the inherent clarity and
readability of the Python language, a vibrant
and responsive Python development community,
and the high degree of backwards compati-
bility and stability we have seen as the
language design evolves over time.

Python’ cross-platform standard library and
platform-independent byte code file format
allow the deployment of Python modules to
any platform, regardless of which platform
the module was prepared on. This helped
not only in avoiding per-platform devel-
opment overhead but also facilitates customer
support for the Timesheet software product.

Conclusion

Python has been an important competitive
advantage for us, and even as our Python
code base grows in complexity and maturity,
the natural advantages of Python enable us to
provide a high quality mission-critical appli-
cation at a competitively low cost.

27



Python Resources

Python Software Foundation
http://www.python.org/psf

Pythonology
http://pythonology.org

O'Reilly & Associates, Inc.
http://python.oreilly.com

O'Reilly Network Python Dev Center
http://www.onlamp.com/python

Python Advocacy HOWTO
http://www.amk.ca/python/howto/advocacy/advocacy.html

Python Starship
http://starship.python.net

Vaults of Parnassus: Python Resources
http://py.vaults.ca/parnassus

Daily Python-URL
http://www.pythonware.com/daily/index.htm

Pyzine
http://www.pyzine.com

Python Journal
http://pythonjournal.cognizor.com

Upcoming Python Conferences and Events

PyCon DC 2003 - March 26-28, Washington D.C.
http://www.python.org/pycon

Python UK Conference 2003 - April 2-3, Oxford, UK
http://www.python-uk.org

EuroPython 2003 - June 25-27, Charleroi, Belgium
http://europython.org

Python11 at OSCON 2003 - July 7-11, Portland, Oregon
http://conferences.oreillynet.com/0s2003


http://www.python.org/psf
http://pythonology.org
http://python.oreilly.com
http://www.onlamp.com/python
http://www.amk.ca/python/howto/advocacy/advocacy.html
http://starship.python.net
http://py.vaults.ca/parnassus
http://www.pythonware.com/daily/index.htm
http://www.pyzine.com
http://pythonjournal.cognizor.com
http://www.python.org/pycon
http://www.python-uk.org
http://europython.org
http://conferences.oreillynet.com/os2003

Embracing and Extending Proprietary Software

O’REILLY

CONVENTION.

Don't miss the Python 11 Conference at the O'Reilly Open Source
Convention. Learn the latest on Python and Zope with comprehensive

case studies, tutorials, and sessions covering the latest modules.

http://conferences.oreilly.com/oscon

Wrap yourself around
our new nutshell.

In classic O'Reilly “In a Nutshell” style, Python in a Nutshell
offers Python programmers one place to look when they
need help remembering or deciphering the syntax of this

PY ON open source language and
IN A NUTSHELL its many modules. This

comprehensive reference
guide makes it easy to
look up all the most
OREILLY- frequently needed infor-
mation—not just about the
Python language itself, but also
> the most frequently used parts of
| SBBI\)I/ glggé\ﬂggfgé 6 Fhe standard. library and th§ most
March 2003 important third-party extensions.

T ORELLY

http://www.oreilly.com

Python in a Nutshell

Item # 30067


http://conferences.oreilly.com/oscon
http://www.oreilly.com



