

The Propeller chip,
a multi core micro controller...

A Presentation by Fredrik Safstrom
Bamse@alleberg.com

:: agenda ::

 An introduction to the Propeller.
 The internal workings, what makes it tick.
 Programming the Propeller in Spin and PASM.
 The Propeller Object Exchange and Wiki.
 Adding "Virtual peripherals".
 Programming the Propeller in Linux
 Demo / Questions
 Introduction to the Hydra.
 Game development on the Hydra.

:: introduction ::

 Developed in house by Parallax
 Runs at 3.3V
 8 32bit CPUs called COGs
 Each COG have 2KB of RAM
 Shared 32KB ROM and 32KB RAM
 The HUB manages shared resources
 32 Input/Output pins
 Two timers per COG
 One Video Generator per COG

:: introduction ::

 Normally runs at 80 MHz, 20 MIPS
 8 COGS give you 160 MIPS
 Programmed in SPIN or PASM
 SPIN is a High Level Language
 Compiled into byte code like Java
 Runs about 0.1 MIPS
 Propeller Assembler (PASM) runs at 20 MIPS
 Boot from either Serial or external EEPROM

:: internal workings ::

:: internal workings ::

:: internal workings ::

 8 32bit CPUs “COGS”, runs independently
 Each cog has 2KB or 512 Longs
 Assembler program must fit within 512 Longs
 Most instruction takes 4 cycles
 Each COG has two timers (A and B)

• Waveform Generation, PWM, Digital to Analog
• Analog to Digital, Frequency counting
• Measuring pulse width, RF carrier

 Each COG has one Video Generator
• Can generate NTSC, PAL or VGA

:: internal workings ::

 Shared resources
• 32 I/O pins
• System clock
• 32KB or RAM and 32KB ROM
• Locks aka Semaphores
• COG instructions

 System Clock and I/O pins are common
 Rest are Mutually Exclusive

• Controlled by the HUB
• Gives access in a “round robin” fashion.

:: internal workings ::

 I/O Pins
• Input only if no other COG set it to output
• Output low only if no other COG set it to high
• Output high if any COG set it to high
• 40mA Source/Sink each, total of 300mA

 System counter
• Derived from X-tal and PLL or Internal RC
• PLL 1x, 2x, 4x, 8x or 16x X-tal
• Normally 80MHz by 5MHz X-tal and PLL 16x
• PLL should be between 64MHz to 128MHz

:: internal workings ::

 HUB
• Gives access to Mutually Exclusive resources
• Memory, Locks, COG operations, System clock
• Round robin fashion, COG# 0, 1, 2, 3, 4, 5, 6, 7
• Runs at half speed, 16 cycles to make one turn
• HUB instructions takes 7-22 cycles
• 7 if lucky
• 15+7 worst case scenario
• HUB operation + 2 instructions to synchronize

:: internal workings ::

 No interrupts
• Wait for pin or System clock in real time
• Start new COG and continue wait

 Boot procedure
• 1. Try detect a host on pin 30 and 31
• 2. External EEPROM on pin 28 and 29
• 3. Stops and goes into shutdown mode
• Loads 32KB of data into RAM
• Starts Spin interpreter on COG 0
• Starts the main Spin program

:: internal workings ::

:: programming ::

 SPIN
• High level language
• Easy to learn
• Mix between Pascal, C and Python
• Relies on indentations for blocks { code }
• Runs about 0.1 MIPS
• Compiled into Byte code
• 32KB code space shared with data
• Supports Objects but it's not an OOP Language

:: programming ::

 Propeller Assembler
• Low level language
• Runs at 20 MIPS
• Relies on self modifying code
• Instructions as movi, movd and movs
• Instructions may or may not set C or Z flags
• All instructions conditional on C or Z flags
• [INSTR][ZCRI][CON][DEST][SRC] 6-4-4-9-9
• 512 instructions per COG
• No stack, no recursive subroutines

:: Propeller Object Exchange & Wiki ::

 Propeller Object Exchange
• Way to share code supported by Parallax
• Anyone can upload/download
• Entries are moderated by Parallax for quality
• Free under MIT License, X11
• http://obex.parallax.com/

 Propeller Wiki
• FAQ, Tutorials, Tips and tricks etc...
• I'm working on my second tutorial for this Wiki
• http://propeller.wikispaces.com/

http://obex.parallax.com/

:: Virtual peripherals ::

 Propeller have no built in peripherals
• No serial communication
• No Analog to Digital or Digital to Analog

 Use Virtual peripherals
• Download Objects from the Objects exchange
• More flexible than peripherals on fixed pins
• Switch functionality on pins
• Usually one COG per peripheral

:: Virtual peripherals ::

 Examples of Virtual peripherals
• RS 232, I2C, SPI, 1-wire, TCP Stack protocol
• Analog to Digital or Digital to Analog
• Signal generation, PWM, Duty, sound
• PAL, NTSC, VGA, LED, VFD, LCD displays
• Servo controller, Stepper motor, Wheel encoder
• Keyboard, mouse, joystick, PS2 pad
• Floating point functions, PID control, FFT
• Sensors, Temperature, GPS, Accelerometer
• External RAM, ROM, SD cards, Memory stick

:: Linux ::

 Not officially supported by Parallax
 Propellent command line compiler by Parallax
 Works under Wine
 Compile spin code to binary/EEPROM
 Use loader.py script to program propeller
 loader.py requires pyserial
 I got it to work on Ubuntu 8
 Supports MacOS as well
 More instructions on Propeller Wiki

:: How to get started ::

 Parallax have started kit
• Hydra $200, includes book + examples
• Hydra also available @ XGameStation.com
• Propeller started kit $100, printed manual
• Propeller Education kit $80
• Propeller Demo board $80
• Propeller Protoboard $20 + Prop plug $25
• Propeller Protoboard with USB $40
• Propeller Protoboard $20 + $5 serial components

Demo

 Show SPIN and Assembler language
 Dummy C=64 Terminal Demo

• My example uses two virtual peripherals
• One VGA and one RS232
• Reads a Commodore 64 Keyboard
• Displays on Monitor and sends over serial port
• Also receives data from serial port

:: Introduction to the Hydra ::

 Developed by André laMothe
• A demo board for Game development
• Built in USB port for programming/serial
• Two NES game pad sockets
• Keyboard and mouse
• Expansion port, replaceable X-tal
• 128KB EEPROM, debug LED
• Hydra Net to connect Hydras
• PAL/NTSC video and sound
• VGA output shared with expansion port

:: Game development on the Hydra ::

 Propeller powerful enough for games
 Learn low level game development

• Generate NTSC/PAL/VGA signals from scratch
• Generate sound from scratch with timers
• How to read game pads with shift registers
• Read Keyboard/mouse signals
• Hydra net communication protocol
• Use add-on Memory, EEPROM or SD cards
• Make your own add-ons with expansion port

Demo

